Jari Ylänne
University of Jyväskylä
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jari Ylänne.
Journal of Biological Chemistry | 1995
Jari Ylänne; Jarkko Huuskonen; Timothy E. O'Toole; Mark H. Ginsberg; Ismo Virtanen; Carl G. Gahmberg
The cytoplasmic domain of the β subunit of the αβ3integrin is required for cell spreading on fibrinogen. Here we report that deletion of six amino acids from the COOH terminus of the β3(ITYRGT) totally abolished cell spreading and formation of adhesion plaques, whereas retaining Ilepartially preserved these functions. We further found that substitution of Tyrwith Ala also abolished αβ3-mediated cell spreading. The effects of these and other mutations on additional functions of αβ3were also studied. Progressive truncations of β3, in which stop codons were inserted at amino acid positions 759-756, caused partial defects in the recruitment of αβ3to preestablished adhesion plaques and a gradual decrease in the ability of αβ3to mediate internalization of fibrinogen-coated particles. The Tyr Ala substitution mutant was almost totally inactive in both of these assays. Point mutations at Tyr, and at a conserved area close to the transmembrane domain of β3, decreased integrin recruitment to preestablished adhesion plaques but allowed αβ3-mediated formation of these structures and partial cell spreading. Deletion of the cytoplasmic domain of β3did not affect the constitutive endocytosis of αβ3.
The EMBO Journal | 2007
Yatish Lad; Tiila R. Kiema; Pengju Jiang; Olli T. Pentikäinen; Charlotte H. Coles; Iain D. Campbell; David A. Calderwood; Jari Ylänne
Human filamins are large actin‐crosslinking proteins composed of an N‐terminal actin‐binding domain followed by 24 Ig‐like domains (IgFLNs), which interact with numerous transmembrane receptors and cytosolic signaling proteins. Here we report the 2.5 Å resolution structure of a three‐domain fragment of human filamin A (IgFLNa19–21). The structure reveals an unexpected domain arrangement, with IgFLNa20 partially unfolded bringing IgFLNa21 into close proximity to IgFLNa19. Notably the N‐terminus of IgFLNa20 forms a β‐strand that associates with the CD face of IgFLNa21 and occupies the binding site for integrin adhesion receptors. Disruption of this IgFLNa20–IgFLNa21 interaction enhances filamin binding to integrin β‐tails. Structural and functional analysis of other IgFLN domains suggests that auto‐inhibition by adjacent IgFLN domains may be a general mechanism controlling filamin–ligand interactions. This can explain the increased integrin binding of filamin splice variants and provides a mechanism by which ligand binding might impact filamin structure.
Annual review of biophysics | 2012
Ziba Razinia; Toni Mäkelä; Jari Ylänne; David A. Calderwood
Filamins are essential, evolutionarily conserved, modular, multidomain, actin-binding proteins that organize the actin cytoskeleton and maintain extracellular matrix connections by anchoring actin filaments to transmembrane receptors. By cross-linking and anchoring actin filaments, filamins stabilize the plasma membrane, provide cellular cortical rigidity, and contribute to the mechanical stability of the plasma membrane and the cell cortex. In addition to binding actin, filamins interact with more than 90 other binding partners including intracellular signaling molecules, receptors, ion channels, transcription factors, and cytoskeletal and adhesion proteins. Thus, filamins scaffold a wide range of signaling pathways and are implicated in the regulation of a diverse array of cellular functions including motility, maintenance of cell shape, and differentiation. Here, we review emerging structural and functional evidence that filamins are mechanosensors and/or mechanotransducers playing essential roles in helping cells detect and respond to physical forces in their local environment.
Journal of Biological Chemistry | 2008
Yatish Lad; Pengju Jiang; David S. Harburger; Jari Ylänne; Iain D. Campbell; David A. Calderwood
A link between sites of cell adhesion and the cytoskeleton is essential for regulation of cell shape, motility, and signaling. Migfilin is a recently identified adaptor protein that localizes at cell-cell and cell-extracellular matrix adhesion sites, where it is thought to provide a link to the cytoskeleton by interacting with the actin cross-linking protein filamin. Here we have used x-ray crystallography, NMR spectroscopy, and protein-protein interaction studies to investigate the molecular basis of migfilin binding to filamin. We report that the N-terminal portion of migfilin can bind all three human filamins (FLNa, -b, or -c) and that there are multiple migfilin-binding sites in FLNa. Human filamins are composed of an N-terminal actin-binding domain followed by 24 immunoglobulin-like (IgFLN) domains and we find that migfilin binds preferentially to IgFLNa21 and more weakly to IgFLNa19 and -22. The filamin-binding site in migfilin is localized between Pro5 and Pro19 and binds to the CD face of the IgFLNa21 β-sandwich. This interaction is similar to the previously characterized β7 integrin-IgFLNa21 interaction and migfilin and integrin β tails can compete with one another for binding to IgFLNa21. This suggests that competition between filamin ligands for common binding sites on IgFLN domains may provide a general means of modulating filamin interactions and signaling. In this specific case, displacement of integrin tails from filamin by migfilin may provide a mechanism for switching between different integrin-cytoskeleton linkages.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Lorenz Rognoni; Johannes Stigler; Benjamin Pelz; Jari Ylänne; Matthias Rief
Mechanical forces are important signals for cell response and development, but detailed molecular mechanisms of force sensing are largely unexplored. The cytoskeletal protein filamin is a key connecting element between the cytoskeleton and transmembrane complexes such as integrins or the von Willebrand receptor glycoprotein Ib. Here, we show using single-molecule mechanical measurements that the recently reported Ig domain pair 20–21 of human filamin A acts as an autoinhibited force-activatable mechanosensor. We developed a mechanical single-molecule competition assay that allows online observation of binding events of target peptides in solution to the strained domain pair. We find that filamin force sensing is a highly dynamic process occurring in rapid equilibrium that increases the affinity to the target peptides by up to a factor of 17 between 2 and 5 pN. The equilibrium mechanism we find here can offer a general scheme for cellular force sensing.
Journal of Molecular Biology | 2009
Ulla Pentikäinen; Jari Ylänne
The ability of adhesion receptors to transmit biochemical signals and mechanical force across cell membranes depends on interactions with the actin cytoskeleton. Human filamins are large actin cross-linking proteins that connect integrins to the cytoskeleton. Filamin binding to the cytoplasmic tail of beta integrins has been shown to prevent integrin activation in cells, which is important for controlling cell adhesion and migration. The molecular-level mechanism for filamin binding to integrin has been unclear, however, as it was recently demonstrated that filamin undergoes intramolecular auto-inhibition of integrin binding. In this study, using steered molecular dynamics simulations, we found that mechanical force applied to filamin can expose cryptic integrin binding sites. The forces required for this are considerably lower than those for filamin immunoglobulin domain unfolding. The mechanical-force-induced unfolding of filamin and exposure of integrin binding sites occur through stable intermediates where integrin binding is possible. Accordingly, our results support filamins role as a mechanotransducer, since force-induced conformational changes allow binding of integrin and other transmembrane and intracellular proteins. This observed force-induced conformational change can also be one of possible mechanisms involved in the regulation of integrin activation.
Current Opinion in Structural Biology | 2008
Björn Sjöblom; Jari Ylänne; Kristina Djinovic-Carugo
Tandem calponin homology (CH) domains are well-known actin filaments (F-actin) binding motifs. There has been a continuous debate about the details of CH domain-actin interaction, mainly because atomic level structures of F-actin are not available. A recent electron microscopy study has considerably advanced our structural understanding of CH domain:F-actin complex. On the contrary, it has recently also been shown that CH domains can bind other macromolecular systems: two CH domains from separate polypeptides Ncd80, Nuf2 can form a microtubule-binding site, as well as tandem CH domains in the EB1 dimer, while the single C-terminal CH domain of alpha-parvin has been observed to bind to a alpha-helical leucin-aspartate rich motif from paxillin.
PLOS ONE | 2009
Fumihiko Nakamura; Outi Heikkinen; Olli T. Pentikäinen; Teresia Osborn; Karen E. Kasza; David A. Weitz; Olga Kupiainen; Perttu Permi; Ilkka Kilpeläinen; Jari Ylänne; John H. Hartwig; Thomas P. Stossel
Background Mutations in filamin A (FLNa), an essential cytoskeletal protein with multiple binding partners, cause developmental anomalies in humans. Methodology/Principal Findings We determined the structure of the 23rd Ig repeat of FLNa (IgFLNa23) that interacts with FilGAP, a Rac-specific GTPase-activating protein and regulator of cell polarity and movement, and the effect of the three disease-related mutations on this interaction. A combination of NMR structural analysis and in silico modeling revealed the structural interface details between the C and D β-strands of the IgFLNa23 and the C-terminal 32 residues of FilGAP. Mutagenesis of the predicted key interface residues confirmed the binding constraints between the two proteins. Specific loss-of-function FLNa constructs were generated and used to analyze the importance of the FLNa-FilGAP interaction in vivo. Point mutagenesis revealed that disruption of the FLNa-FilGAP interface perturbs cell spreading. FilGAP does not bind FLNa homologs FLNb or FLNc establishing the importance of this interaction to the human FLNa mutations. Tight complex formation requires dimerization of both partners and the correct alignment of the binding surfaces, which is promoted by a flexible hinge domain between repeats 23 and 24 of FLNa. FLNa mutations associated with human developmental anomalies disrupt the binding interaction and weaken the elasticity of FLNa/F-actin network under high mechanical stress. Conclusions/Significance Mutational analysis informed by structure can generate reagents for probing specific cellular interactions of FLNa. Disease-related FLNa mutations have demonstrable effects on FLNa function.
Journal of Biological Chemistry | 2009
Outi Heikkinen; Peter V. Konarev; Dimitri I. Svergun; Tatu Iivanainen; Sami Heikkinen; Perttu Permi; Harri Koskela; Ilkka Kilpeläinen; Jari Ylänne
Filamins are actin filament cross-linking proteins composed of an N-terminal actin-binding domain and 24 immunoglobulin-like domains (IgFLNs). Filamins interact with numerous proteins, including the cytoplasmic domains of plasma membrane signaling and cell adhesion receptors. Thereby filamins mechanically and functionally link the cell membrane to the cytoskeleton. Most of the interactions have been mapped to the C-terminal IgFLNs 16–24. Similarly, as with the previously known compact domain pair of IgFLNa20–21, the two-domain fragments IgFLNa16–17 and IgFLNa18–19 were more compact in small angle x-ray scattering analysis than would be expected for two independent domains. Solution state NMR structures revealed that the domain packing in IgFLNa18–19 resembles the structure of IgFLNa20–21. In both domain pairs the integrin-binding site is masked, although the details of the domain-domain interaction are partly distinct. The structure of IgFLNa16–17 revealed a new domain packing mode where the adhesion receptor binding site of domain 17 is not masked. Sequence comparison suggests that similar packing of three tandem filamin domain pairs is present throughout the animal kingdom, and we propose that this packing is involved in the regulation of filamin interactions through a mechanosensor mechanism.
Developmental Cell | 2013
Sven Huelsmann; Jari Ylänne; Nicholas H. Brown
Summary Controlling the position of the nucleus is vital for a number of cellular processes from yeast to humans. In Drosophila nurse cells, nuclear positioning is crucial during dumping, when nurse cells contract and expel their contents into the oocyte. We provide evidence that in nurse cells, continuous filopodia-like actin cables, growing from the plasma membrane and extending to the nucleus, achieve nuclear positioning. These actin cables move nuclei away from ring canals. When nurse cells contract, actin cables associate laterally with the nuclei, in some cases inducing nuclear turning so that actin cables become partially wound around the nuclei. Our data suggest that a perinuclear actin meshwork connects actin cables to nuclei via actin-crosslinking proteins such as the filamin Cheerio. We provide a revised model for how actin structures position nuclei in nurse cells, employing evolutionary conserved machinery.