Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jarkko Salojärvi is active.

Publication


Featured researches published by Jarkko Salojärvi.


IEEE Transactions on Neural Networks | 2000

Self organization of a massive document collection

Teuvo Kohonen; Samuel Kaski; Krista Lagus; Jarkko Salojärvi; Jukka Honkela; Antti Saarela

This article describes the implementation of a system that is able to organize vast document collections according to textual similarities. It is based on the self-organizing map (SOM) algorithm. As the feature vectors for the documents statistical representations of their vocabularies are used. The main goal in our work has been to scale up the SOM algorithm to be able to deal with large amounts of high-dimensional data. In a practical experiment we mapped 6,840,568 patent abstracts onto a 1,002,240-node SOM. As the feature vectors we used 500-dimensional vectors of stochastic figures obtained as random projections of weighted word histograms.


Plant Journal | 2010

Ozone-triggered rapid stomatal response involves the production of reactive oxygen species, and is controlled by SLAC1 and OST1.

Triin Vahisalu; Irina Puzõrjova; Mikael Brosché; Ervin Valk; Martin Lepiku; Heino Moldau; Priit Pechter; Yuh-Shuh Wang; Ove Lindgren; Jarkko Salojärvi; Mart Loog; Jaakko Kangasjärvi; Hannes Kollist

The air pollutant ozone can be used as a tool to unravel in planta processes induced by reactive oxygen species (ROS). Here, we have utilized ozone to study ROS-dependent stomatal signaling. We show that the ozone-triggered rapid transient decrease (RTD) in stomatal conductance coincided with a burst of ROS in guard cells. RTD was present in 11 different Arabidopsis ecotypes, suggesting that it is a genetically robust response. To study which signaling components or ion channels were involved in RTD, we tested 44 mutants deficient in various aspects of stomatal function. This revealed that the SLAC1 protein, essential for guard cell plasma membrane S-type anion channel function, and the protein kinase OST1 were required for the ROS-induced fast stomatal closure. We showed a physical interaction between OST1 and SLAC1, and provide evidence that SLAC1 is phosphorylated by OST1. Phosphoproteomic experiments indicated that OST1 phosphorylated multiple amino acids in the N terminus of SLAC1. Using TILLING we identified three new slac1 alleles where predicted phosphosites were mutated. The lack of RTD in two of them, slac1-7 (S120F) and slac1-8 (S146F), suggested that these serine residues were important for the activation of SLAC1. Mass-spectrometry analysis combined with site-directed mutagenesis and phosphorylation assays, however, showed that only S120 was a specific phosphorylation site for OST1. The absence of the RTD in the dominant-negative mutants abi1-1 and abi2-1 also suggested a regulatory role for the protein phosphatases ABI1 and ABI2 in the ROS-induced activation of the S-type anion channel.


BMC Plant Biology | 2010

Transcriptional regulation of the CRK/DUF26 group of Receptor-like protein kinases by ozone and plant hormones in Arabidopsis

Michael Wrzaczek; Mikael Brosché; Jarkko Salojärvi; Saijaliisa Kangasjärvi; Niina Idänheimo; Sophia Mersmann; Silke Robatzek; Stanislaw Karpinski; Barbara Karpinska; Jaakko Kangasjärvi

BackgroundPlant Receptor-like/Pelle kinases (RLK) are a group of conserved signalling components that regulate developmental programs and responses to biotic and abiotic stresses. One of the largest RLK groups is formed by the Domain of Unknown Function 26 (DUF26) RLKs, also called Cysteine-rich Receptor-like Kinases (CRKs), which have been suggested to play important roles in the regulation of pathogen defence and programmed cell death. Despite the vast number of RLKs present in plants, however, only a few of them have been functionally characterized.ResultsWe examined the transcriptional regulation of all Arabidopsis CRKs by ozone (O3), high light and pathogen/elicitor treatment - conditions known to induce the production of reactive oxygen species (ROS) in various subcellular compartments. Several CRKs were transcriptionally induced by exposure to O3 but not by light stress. O3 induces an extracellular oxidative burst, whilst light stress leads to ROS production in chloroplasts. Analysis of publicly available microarray data revealed that the transcriptional responses of the CRKs to O3 were very similar to responses to microbes or pathogen-associated molecular patterns (PAMPs). Several mutants altered in hormone biosynthesis or signalling showed changes in basal and O3-induced transcriptional responses.ConclusionsCombining expression analysis from multiple treatments with mutants altered in hormone biosynthesis or signalling suggest a model in which O3 and salicylic acid (SA) activate separate signaling pathways that exhibit negative crosstalk. Although O3 is classified as an abiotic stress to plants, transcriptional profiling of CRKs showed strong similarities between the O3 and biotic stress responses.


The ISME Journal | 2014

Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men

Anne Salonen; Leo Lahti; Jarkko Salojärvi; Grietje Holtrop; Katri Korpela; Sylvia H. Duncan; Priya Date; Freda Farquharson; Alexandra M. Johnstone; G. E. Lobley; Petra Louis; Harry J. Flint; Willem M. de Vos

There is growing interest in understanding how diet affects the intestinal microbiota, including its possible associations with systemic diseases such as metabolic syndrome. Here we report a comprehensive and deep microbiota analysis of 14 obese males consuming fully controlled diets supplemented with resistant starch (RS) or non-starch polysaccharides (NSPs) and a weight-loss (WL) diet. We analyzed the composition, diversity and dynamics of the fecal microbiota on each dietary regime by phylogenetic microarray and quantitative PCR (qPCR) analysis. In addition, we analyzed fecal short chain fatty acids (SCFAs) as a proxy of colonic fermentation, and indices of insulin sensitivity from blood samples. The diet explained around 10% of the total variance in microbiota composition, which was substantially less than the inter-individual variance. Yet, each of the study diets induced clear and distinct changes in the microbiota. Multiple Ruminococcaceae phylotypes increased on the RS diet, whereas mostly Lachnospiraceae phylotypes increased on the NSP diet. Bifidobacteria decreased significantly on the WL diet. The RS diet decreased the diversity of the microbiota significantly. The total 16S ribosomal RNA gene signal estimated by qPCR correlated positively with the three major SCFAs, while the amount of propionate specifically correlated with the Bacteroidetes. The dietary responsiveness of the individual’s microbiota varied substantially and associated inversely with its diversity, suggesting that individuals can be stratified into responders and non-responders based on the features of their intestinal microbiota.


PLOS ONE | 2012

Comparative Metaproteomics and Diversity Analysis of Human Intestinal Microbiota Testifies for Its Temporal Stability and Expression of Core Functions

Carolin Kolmeder; Mark de Been; Janne Nikkilä; Ilja Ritamo; Jaana Mättö; Leena Valmu; Jarkko Salojärvi; Airi Palva; Anne Salonen; Willem M. de Vos

The human intestinal tract is colonized by microbial communities that show a subject-specific composition and a high-level temporal stability in healthy adults. To determine whether this is reflected at the functional level, we compared the faecal metaproteomes of healthy subjects over time using a novel high-throughput approach based on denaturing polyacrylamide gel electrophoresis and liquid chromatography–tandem mass spectrometry. The developed robust metaproteomics workflow and identification pipeline was used to study the composition and temporal stability of the intestinal metaproteome using faecal samples collected from 3 healthy subjects over a period of six to twelve months. The same samples were also subjected to DNA extraction and analysed for their microbial composition and diversity using the Human Intestinal Tract Chip, a validated phylogenetic microarray. Using metagenome and single genome sequence data out of the thousands of mass spectra generated per sample, approximately 1,000 peptides per sample were identified. Our results indicate that the faecal metaproteome is subject-specific and stable during a one-year period. A stable common core of approximately 1,000 proteins could be recognized in each of the subjects, indicating a common functional core that is mainly involved in carbohydrate transport and degradation. Additionally, a variety of surface proteins could be identified, including potential microbes-host interacting components such as flagellins and pili. Altogether, we observed a highly comparable subject-specific clustering of the metaproteomic and phylogenetic profiles, indicating that the distinct microbial activity is reflected by the individual composition.


Science | 2016

Durable coexistence of donor and recipient strains after fecal microbiota transplantation

Simone S. Li; Ana Zhu; Vladimir Benes; Paul Igor Costea; Rajna Hercog; Falk Hildebrand; Jaime Huerta-Cepas; Max Nieuwdorp; Jarkko Salojärvi; Anita Yvonne Voigt; Georg Zeller; Shinichi Sunagawa; Willem M. de Vos; Peer Bork

Persistence of fecal transplants Fecal microbiota transplantation is a successful way of treating the distressing symptoms of irritable bowel disease or Clostridium difficile infection. The procedure is done by administering a concentrate of colonic bacteria from a healthy donor. Li et al. used metagenomic data to look at single-nucleotide variants after transplants in humans. Donor and recipient strains coexisted for at least 3 months. Some donor strains replaced related strains of the same species, but totally novel species from a donor were unlikely to thrive in a recipient. Rational design of personalized fecal transplant “cocktails” will therefore rely on resolution beyond the species level. Science, this issue p. 586 The mystery of the success of clinical microbial transplant therapy is beginning to be decoded. Fecal microbiota transplantation (FMT) has shown efficacy in treating recurrent Clostridium difficile infection and is increasingly being applied to other gastrointestinal disorders, yet the fate of native and introduced microbial strains remains largely unknown. To quantify the extent of donor microbiota colonization, we monitored strain populations in fecal samples from a recent FMT study on metabolic syndrome patients using single-nucleotide variants in metagenomes. We found extensive coexistence of donor and recipient strains, persisting 3 months after treatment. Colonization success was greater for conspecific strains than for new species, the latter falling within fluctuation levels observed in healthy individuals over a similar time frame. Furthermore, same-donor recipients displayed varying degrees of microbiota transfer, indicating individual patterns of microbiome resistance and donor-recipient compatibilities.


Gut | 2014

Faecal microbiota composition and host–microbe cross-talk following gastroenteritis and in postinfectious irritable bowel syndrome

Jonna Jalanka-Tuovinen; Jarkko Salojärvi; Anne Salonen; Outi Immonen; Klara Garsed; Fiona M. Kelly; Abed Zaitoun; Airi Palva; Robin C. Spiller; Willem M. de Vos

Background About 10% of patients with IBS report the start of the syndrome after infectious enteritis. The clinical features of postinfectious IBS (PI-IBS) resemble those of diarrhoea-predominant IBS (IBS-D). While altered faecal microbiota has been identified in other IBS subtypes, composition of the microbiota in patients with PI-IBS remains uncharacterised. Objective To characterise the microbial composition of patients with PI-IBS, and to examine the associations between the faecal microbiota and a patients clinical features. Design Using a phylogenetic microarray and selected qPCR assays, we analysed differences in the faecal microbiota of 57 subjects from five study groups: patients with diagnosed PI-IBS, patients who 6 months after gastroenteritis had either persisting bowel dysfunction or no IBS symptoms, benchmarked against patients with IBS-D and healthy controls. In addition, the associations between the faecal microbiota and health were investigated by correlating the microbial profiles to immunological markers, quality of life indicators and host gene expression in rectal biopsies. Results Microbiota analysis revealed a bacterial profile of 27 genus-like groups, providing an Index of Microbial Dysbiosis (IMD), which significantly separated patient groups and controls. Within this profile, several members of Bacteroidetes phylum were increased 12-fold in patients, while healthy controls had 35-fold more uncultured Clostridia. We showed correlations between the IMD and expression of several host gene pathways, including amino acid synthesis, cell junction integrity and inflammatory response, suggesting an impaired epithelial barrier function in IBS. Conclusions The faecal microbiota of patients with PI-IBS differs from that of healthy controls and resembles that of patients with IBS-D, suggesting a common pathophysiology. Moreover, our analysis suggests a variety of host–microbe associations that may underlie intestinal symptoms, initiated by gastroenteritis.


Nature | 2014

PLETHORA gradient formation mechanism separates auxin responses

Ari Pekka Mähönen; Kirsten H. ten Tusscher; Riccardo Siligato; Ondrej Smetana; Sara Díaz-Triviño; Jarkko Salojärvi; Guy Wachsman; Kalika Prasad; Renze Heidstra; Ben Scheres

During plant growth, dividing cells in meristems must coordinate transitions from division to expansion and differentiation, thus generating three distinct developmental zones: the meristem, elongation zone and differentiation zone. Simultaneously, plants display tropisms, rapid adjustments of their direction of growth to adapt to environmental conditions. It is unclear how stable zonation is maintained during transient adjustments in growth direction. In Arabidopsis roots, many aspects of zonation are controlled by the phytohormone auxin and auxin-induced PLETHORA (PLT) transcription factors, both of which display a graded distribution with a maximum near the root tip. In addition, auxin is also pivotal for tropic responses. Here, using an iterative experimental and computational approach, we show how an interplay between auxin and PLTs controls zonation and gravitropism. We find that the PLT gradient is not a direct, proportionate readout of the auxin gradient. Rather, prolonged high auxin levels generate a narrow PLT transcription domain from which a gradient of PLT protein is subsequently generated through slow growth dilution and cell-to-cell movement. The resulting PLT levels define the location of developmental zones. In addition to slowly promoting PLT transcription, auxin also rapidly influences division, expansion and differentiation rates. We demonstrate how this specific regulatory design in which auxin cooperates with PLTs through different mechanisms and on different timescales enables both the fast tropic environmental responses and stable zonation dynamics necessary for coordinated cell differentiation.


Plant Physiology | 2011

Apoplastic reactive oxygen species transiently decrease auxin signaling and cause stress-induced morphogenic response in Arabidopsis

Tiina Blomster; Jarkko Salojärvi; Nina Sipari; Mikael Brosché; Reetta Ahlfors; Markku Keinänen; Kirk Overmyer; Jaakko Kangasjärvi

Reactive oxygen species (ROS) are ubiquitous signaling molecules in plant stress and development. To gain further insight into the plant transcriptional response to apoplastic ROS, the phytotoxic atmospheric pollutant ozone was used as a model ROS inducer in Arabidopsis (Arabidopsis thaliana) and gene expression was analyzed with microarrays. In contrast to the increase in signaling via the stress hormones salicylic acid, abscisic acid, jasmonic acid (JA), and ethylene, ROS treatment caused auxin signaling to be transiently suppressed, which was confirmed with a DR5-uidA auxin reporter construct. Transcriptomic data revealed that various aspects of auxin homeostasis and signaling were modified by apoplastic ROS. Furthermore, a detailed analysis of auxin signaling showed that transcripts of several auxin receptors and Auxin/Indole-3-Acetic Acid (Aux/IAA) transcriptional repressors were reduced in response to apoplastic ROS. The ROS-derived changes in the expression of auxin signaling genes partially overlapped with abiotic stress, pathogen responses, and salicylic acid signaling. Several mechanisms known to suppress auxin signaling during biotic stress were excluded, indicating that ROS regulated auxin responses via a novel mechanism. Using mutants defective in various auxin (axr1, nit1, aux1, tir1 afb2, iaa28-1, iaa28-2) and JA (axr1, coi1-16) responses, ROS-induced cell death was found to be regulated by JA but not by auxin. Chronic ROS treatment resulted in altered leaf morphology, a stress response known as “stress-induced morphogenic response.” Altered leaf shape of tir1 afb2 suggests that auxin was a negative regulator of stress-induced morphogenic response in the rosette.


IEEE Transactions on Neural Networks | 1999

Self-Organization of a Massive Text Document Collection

Teuvo Kohonen; Samuel Kaski; Krista Lagus; Jarkko Salojärvi; Jukka Honkela; Antti Saarela

Publisher Summary This chapter discusses that when the self-organizing map (SOM) is applied to the mapping of documents, one can represent them statistically by their weighted word frequency histograms or some reduced representations of the histograms that can be regarded as data vectors. One SOM of about seven million documents has been made, viz., of all of the patent abstracts in the world that have been written in English and are available in electronic form. The map consists of about one million models. Keywords or key texts can be used to search for the most relevant documents first. New effective coding and computational schemes of the mapping are described. The document organization, searching, and browsing system is called WEBSOM, and is described in this chapter. The original WEBSOM was two-level SOM architecture, but it was later simplified.

Collaboration


Dive into the Jarkko Salojärvi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Willem M. de Vos

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge