Jarle W. Bjerke
University of Tromsø
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jarle W. Bjerke.
Photochemical and Photobiological Sciences | 2002
Jarle W. Bjerke; Kjetil Lerfall; Arve Elvebakk
The fruticose lichen Flavocetraria nivalis and the crustose lichen Ophioparma ventosa, both common in light-exposed arctic-alpine environments, were exposed to ultraviolet radiation (UVR) in growth chambers for 30 days. Treatment with visible light (PAR) served as control. Both species accumulate the UV-absorbing phenolic compound usnic acid in the upper cortex. The latter species also synthesises several UV-absorbing medullary compounds, among them divaricatic acid. The effects of treatment with UVR on the synthesis of these two compounds were investigated by analysing the compounds quantitatively by RP-HPLC. UV-exposed thallus tips of F. nivalis contained higher concentrations of usnic acid than those not grown under UVR. Both treatments had a positive effect on the synthesis of usnic acid in O. ventosa. An additional experiment with O. ventosa was performed by first storing samples in a low-light habitat for 1 year to obtain near-zero levels of phenolics, and thereby exposing the samples to UVR and PAR for 90 days. A rapid resynthesis of usnic acid was observed for both treatments. The amounts of divaricatic acid were highly variable in all groups, and were not correlated with usnic acid concentrations or treatments. A comparison of O. ventosa from three different habitat types showed that the highest usnic acid amounts were found in the habitat with the highest levels of solar radiation. Results indicate that the induction of usnic acid production by UVR depends on the species studied, and on how well acclimatised the lichen samples are to solar radiation before they are exposed to supplementary UVR. In lichens with an already well-developed internal screening capacity, like the population of F. nivalis, enhanced UVR need not induce further accumulation of usnic acid, but removal of UVR may induce a biodegradation of usnic acid. Results also indicate that PAR is just as important as UVR for triggering the resynthesis of usnic acid in shade-adapted lichens. Divaricatic acid seems to be of low importance for the UV-screening properties of O. ventosa.
Physiologia Plantarum | 2010
Stef Bokhorst; Jarle W. Bjerke; Matthew P. Davey; Kari Taulavuori; Erja Taulavuori; Kari Laine; Terry V. Callaghan; Gareth K. Phoenix
Insulation provided by snow cover and tolerance of freezing by physiological acclimation allows Arctic plants to survive cold winter temperatures. However, both the protection mechanisms may be lost with winter climate change, especially during extreme winter warming events where loss of snow cover from snow melt results in exposure of plants to warm temperatures and then returning extreme cold in the absence of insulating snow. These events cause considerable damage to Arctic plants, but physiological responses behind such damage remain unknown. Here, we report simulations of extreme winter warming events using infrared heating lamps and soil warming cables in a sub-Arctic heathland. During these events, we measured maximum quantum yield of photosystem II (PSII), photosynthesis, respiration, bud swelling and associated bud carbohydrate changes and lipid peroxidation to identify physiological responses during and after the winter warming events in three dwarf shrub species: Empetrum hermaphroditum, Vaccinium vitis-idaea and Vaccinium myrtillus. Winter warming increased maximum quantum yield of PSII, and photosynthesis was initiated for E. hermaphroditum and V. vitis-idaea. Bud swelling, bud carbohydrate decreases and lipid peroxidation were largest for E. hermaphroditum, whereas V. myrtillus and V. vitis-idaea showed no or less strong responses. Increased physiological activity and bud swelling suggest that sub-Arctic plants can initiate spring-like development in response to a short winter warming event. Lipid peroxidation suggests that plants experience increased winter stress. The observed differences between species in physiological responses are broadly consistent with interspecific differences in damage seen in previous studies, with E. hermaphroditum and V. myrtillus tending to be most sensitive. This suggests that initiation of spring-like development may be a major driver in the damage caused by winter warming events that are predicted to become more frequent in some regions of the Arctic and that may ultimately drive plant community shifts.
Philosophical Transactions of the Royal Society B | 2013
Terry V. Callaghan; Christer Jonasson; Tomas Thierfelder; Zhenlin Yang; Henrik Hedenås; Margareta Johansson; Ulf Molau; Rik Van Bogaert; Anders Michelsen; Johan Olofsson; Dylan Gwynn-Jones; Stef Bokhorst; Gareth K. Phoenix; Jarle W. Bjerke; Hans Tømmervik; Torben R. Christensen; Edward Hanna; Eva K. Koller; Victoria L. Sloan
The subarctic environment of northernmost Sweden has changed over the past century, particularly elements of climate and cryosphere. This paper presents a unique geo-referenced record of environmental and ecosystem observations from the area since 1913. Abiotic changes have been substantial. Vegetation changes include not only increases in growth and range extension but also counterintuitive decreases, and stability: all three possible responses. Changes in species composition within the major plant communities have ranged between almost no changes to almost a 50 per cent increase in the number of species. Changes in plant species abundance also vary with particularly large increases in trees and shrubs (up to 600%). There has been an increase in abundance of aspen and large changes in other plant communities responding to wetland area increases resulting from permafrost thaw. Populations of herbivores have responded to varying management practices and climate regimes, particularly changing snow conditions. While it is difficult to generalize and scale-up the site-specific changes in ecosystems, this very site-specificity, combined with projections of change, is of immediate relevance to local stakeholders who need to adapt to new opportunities and to respond to challenges. Furthermore, the relatively small area and its unique datasets are a microcosm of the complexity of Arctic landscapes in transition that remains to be documented.
Global Change Biology | 2016
Gareth K. Phoenix; Jarle W. Bjerke
NOAA’s recent assessment of Arctic greenness has reported a remarkable finding: the Arctic is browning (Epstein et al., 2015). Whilst a clear greening trend has been apparent for most of the satellite record’s 33 year history (indicating an increase in biomass and productivity), there is now an overall decline in greenness from 2011 to 2014. If this is a new direction of travel for arctic vegetation, rather than just a temporary departure from long-term greening, this has major implications for not only our understanding of the future of arctic vegetation, but also arctic carbon, nutrient and water cycling, surface energy balance and permafrost degradation, and therefore feedback to climate, all of which are strongly influenced by vegetation composition, productivity and biomass. The urgency in understanding what is happening here is clear. Most models predict arctic greening; to what extent are they wrong, and why? Arctic greening has rightly received much attention. Satellite and observational data have consistently confirmed an increase in vegetation cover and productivity in many regions (Xu et al., 2013) caused most notably by the expansion of large stature deciduous shrubs (Myers-Smith et al., 2015). Likewise, field simulation experiments provide strong evidence that greening is driven by warming (Elmendorf et al., 2012). However, the magnitude of the recent browning is large and cannot be ignored. For both the Eurasian Arctic and the Arctic as a whole, Epstein et al. report the 2014 maxNDVI (greenness) to be below the 33-year average. To find lower values than 2014, you have to go back to 1996 for the whole Arctic and to 1993 for the Eurasian Arctic. However, while browning is the overall trend, there is considerable regional variation and the Arctic is not browning everywhere. These findings raise important questions that represent priority challenges, including (1) what is driving the browning? (2) is browning the new trajectory or only a temporary reversal of greening? and (3) what arctic regions and vegeta-
New Phytologist | 2015
Pradeep K. Divakar; Ana Crespo; Mats Wedin; Steven D. Leavitt; David L. Hawksworth; Leena Myllys; Bruce McCune; Tiina Randlane; Jarle W. Bjerke; Yoshihito Ohmura; Imke Schmitt; Carlos G. Boluda; David Alors; Beatriz Roca-Valiente; Ruth Del-Prado; Constantino Ruibal; Kawinnat Buaruang; Jano Núñez-Zapata; Guillermo Amo de Paz; Víctor J. Rico; M. Carmen Molina; John A. Elix; Theodore L. Esslinger; Inger Kristin K. Tronstad; Hanna Lindgren; Damien Ertz; Cécile Gueidan; Lauri Saag; Kristiina Mark; Garima Singh
We studied the evolutionary history of the Parmeliaceae (Lecanoromycetes, Ascomycota), one of the largest families of lichen-forming fungi with complex and variable morphologies, also including several lichenicolous fungi. We assembled a six-locus data set including nuclear, mitochondrial and low-copy protein-coding genes from 293 operational taxonomic units (OTUs). The lichenicolous lifestyle originated independently three times in lichenized ancestors within Parmeliaceae, and a new generic name is introduced for one of these fungi. In all cases, the independent origins occurred c. 24 million yr ago. Further, we show that the Paleocene, Eocene and Oligocene were key periods when diversification of major lineages within Parmeliaceae occurred, with subsequent radiations occurring primarily during the Oligocene and Miocene. Our phylogenetic hypothesis supports the independent origin of lichenicolous fungi associated with climatic shifts at the Oligocene-Miocene boundary. Moreover, diversification bursts at different times may be crucial factors driving the diversification of Parmeliaceae. Additionally, our study provides novel insight into evolutionary relationships in this large and diverse family of lichen-forming ascomycetes.
AMBIO: A Journal of the Human Environment | 2012
Stef Bokhorst; Jarle W. Bjerke; Hans Tømmervik; Catherine Preece; Gareth K. Phoenix
Winter climate and snow cover are the important drivers of plant community development in polar regions. However, the impacts of changing winter climate and associated changes in snow regime have received much less attention than changes during summer. Here, we synthesize the results from studies on the impacts of extreme winter weather events on polar heathland and lichen communities. Dwarf shrubs, mosses and soil arthropods were negatively impacted by extreme warming events while lichens showed variable responses to changes in extreme winter weather events. Snow mould formation underneath the snow may contribute to spatial heterogeneity in plant growth, arthropod communities and carbon cycling. Winter snow cover and depth will drive the reported impacts of winter climate change and add to spatial patterns in vegetation heterogeneity. The challenges ahead lie in obtaining better predictions on the snow patterns across the landscape and how these will be altered due to winter climate change.
AMBIO: A Journal of the Human Environment | 2016
Stef Bokhorst; Stine Højlund Pedersen; Ludovic Brucker; Oleg A. Anisimov; Jarle W. Bjerke; Ross Brown; Dorothee Ehrich; Richard Essery; Achim Heilig; Susanne Ingvander; Cecilia Johansson; Margareta Johansson; Ingibjörg S. Jónsdóttir; Niila Inga; Kari Luojus; Giovanni Macelloni; Heather Mariash; Donald McLennan; Gunhild Rosqvist; Atsushi Sato; Hannele Savela; Martin Schneebeli; A. A. Sokolov; Sergey A. Sokratov; Silvia Terzago; Dagrun Vikhamar-Schuler; Scott N. Williamson; Yubao Qiu; Terry V. Callaghan
Snow is a critically important and rapidly changing feature of the Arctic. However, snow-cover and snowpack conditions change through time pose challenges for measuring and prediction of snow. Plausible scenarios of how Arctic snow cover will respond to changing Arctic climate are important for impact assessments and adaptation strategies. Although much progress has been made in understanding and predicting snow-cover changes and their multiple consequences, many uncertainties remain. In this paper, we review advances in snow monitoring and modelling, and the impact of snow changes on ecosystems and society in Arctic regions. Interdisciplinary activities are required to resolve the current limitations on measuring and modelling snow characteristics through the cold season and at different spatial scales to assure human well-being, economic stability, and improve the ability to predict manage and adapt to natural hazards in the Arctic region.
Environmental Research Letters | 2014
Jarle W. Bjerke; Stein Rune Karlsen; Kjell Arild Høgda; Eirik Malnes; Jane U. Jepsen; Sarah Lovibond; Dagrun Vikhamar-Schuler; Hans Tømmervik
The release of cold temperature constraints on photosynthesis has led to increased productivity (greening) in significant parts (32–39%) of the Arctic, but much of the Arctic shows stable (57–64%) or reduced productivity (browning, <4%). Summer drought and wildfires are the best-documented drivers causing browning of continental areas, but factors dampening the greening effect of more maritime regions have remained elusive. Here we show how multiple anomalous weather events severely affected the terrestrial productivity during one water year (October 2011–September 2012) in a maritime region north of the Arctic Circle, the Nordic Arctic Region, and contributed to the lowest mean vegetation greenness (normalized difference vegetation index) recorded this century. Procedures for field data sampling were designed during or shortly after the events in order to assess both the variability in effects and the maximum effects of the stressors. Outbreaks of insect and fungal pests also contributed to low greenness. Vegetation greenness in 2012 was 6.8% lower than the 2000–11 average and 58% lower in the worst affected areas that were under multiple stressors. These results indicate the importance of events (some being mostly neglected in climate change effect studies and monitoring) for primary productivity in a high-latitude maritime region, and highlight the importance of monitoring plant damage in the field and including frequencies of stress events in models of carbon economy and ecosystem change in the Arctic. Fourteen weather events and anomalies and 32 hypothesized impacts on plant productivity are summarized as an aid for directing future research.
Plant Ecology | 2006
Bjørn Solheim; Matthias Zielke; Jarle W. Bjerke; Jelte Rozema
Recent global climate models predict a further significant loss of ozone in the next decades, with up to 50% depletion of the ozone layer over large parts of the Arctic resulting in an increase in ultraviolet-B radiation (UV-B) (280–315 nm) reaching the surface of the Earth. The percentage of total annual ecosystem N input due to biological nitrogen fixation by cyanobacteria might be as high as 80% and the contribution to total annual N uptake by plants up to 20%. A possible reduction of nitrogen fixation raises serious concerns about already nutrient impoverished plant communities. This review shows that nitrogen fixation by moss-associated cyanobacteria in arctic vegetation was dramatically reduced after six years of exposure to enhanced UV-B radiation. In subarctic vegetation, nitrogen fixation activity of moss-associated cyanobacteria was not affected by 6 years of enhanced UV-B radiation. However, a 50% increase of summer precipitation resulted in a 5- to 6-fold increase in activity. Long-term effects of UV-B radiation on nitrogen fixation activity have been examined only in two lichens, giving contrasting results. Peltigera aphthosa (L.) Willd., having external cephalodia, experienced a significant reduction, whereas Peltigera didactyla (With.) J.R. Laudon, having cyanobacteria in the photobiont layer below the upper cortex, did not experience any changes due to radiation regimes. The difference is probably related to the location of the cyanobacteria. While the Nostoc cells are protected by the fungal, melanized upper cortex in P. didactyla, they are exposed and unprotected in P. aphthosa, and their own synthesis of UV-B absorbing compounds appears to be low. Under certain environmental conditions, an increasing UV-B radiation will dramatically affect nitrogen fixation in arctic tundra vegetation, which in turn may have severe influence on the nitrogen budget in these environments. Further long-term studies are necessary to conclude if these effects are temporal and how concurrent climatic changes will influence the nitrogen balance of the ecosystem.
Journal of Climate | 2016
Dagrun Vikhamar-Schuler; Ketil Isaksen; Jan Erik Haugen; Hans Tømmervik; Bartłomiej Luks; Thomas Vikhamar Schuler; Jarle W. Bjerke
AbstractIn recent years extreme winter warming events have been reported in arctic areas. These events are characterized as extraordinarily warm weather episodes, occasionally combined with intense rainfall, causing ecological disturbance and challenges for arctic societies and infrastructure. Ground-ice formation due to winter rain or melting prevents ungulates from grazing, leads to vegetation browning, and impacts soil temperatures. The authors analyze changes in frequency and intensity of winter warming events in the Nordic arctic region—northern Norway, Sweden, and Finland, including the arctic islands Svalbard and Jan Mayen. This study identifies events in the longest available records of daily temperature and precipitation, as well as in future climate scenarios, and performs analyses of long-term trends for climate indices aimed to capture these individual events. Results show high frequencies of warm weather events during the 1920s–30s and the past 15 years (2000–14), causing weak positive trends...