Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jarmo Ritari is active.

Publication


Featured researches published by Jarmo Ritari.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human- mucus binding protein

Matti Kankainen; Lars Paulin; Soile Tynkkynen; Ingemar von Ossowski; Justus Reunanen; Pasi Partanen; Reetta Satokari; Satu Vesterlund; Antoni P. A. Hendrickx; Sarah Lebeer; Sigrid De Keersmaecker; Jos Vanderleyden; Tuula Hämäläinen; Suvi Laukkanen; Noora Salovuori; Jarmo Ritari; Edward Alatalo; Riitta Korpela; Tiina Mattila-Sandholm; Anna Lassig; Katja Hatakka; Katri T. Kinnunen; Heli Karjalainen; Maija Saxelin; Kati Laakso; Anu Surakka; Airi Palva; Tuomas Salusjärvi; Petri Auvinen; Willem M. de Vos

To unravel the biological function of the widely used probiotic bacterium Lactobacillus rhamnosus GG, we compared its 3.0-Mbp genome sequence with the similarly sized genome of L. rhamnosus LC705, an adjunct starter culture exhibiting reduced binding to mucus. Both genomes demonstrated high sequence identity and synteny. However, for both strains, genomic islands, 5 in GG and 4 in LC705, punctuated the colinearity. A significant number of strain-specific genes were predicted in these islands (80 in GG and 72 in LC705). The GG-specific islands included genes coding for bacteriophage components, sugar metabolism and transport, and exopolysaccharide biosynthesis. One island only found in L. rhamnosus GG contained genes for 3 secreted LPXTG-like pilins (spaCBA) and a pilin-dedicated sortase. Using anti-SpaC antibodies, the physical presence of cell wall-bound pili was confirmed by immunoblotting. Immunogold electron microscopy showed that the SpaC pilin is located at the pilus tip but also sporadically throughout the structure. Moreover, the adherence of strain GG to human intestinal mucus was blocked by SpaC antiserum and abolished in a mutant carrying an inactivated spaC gene. Similarly, binding to mucus was demonstrated for the purified SpaC protein. We conclude that the presence of SpaC is essential for the mucus interaction of L. rhamnosus GG and likely explains its ability to persist in the human intestinal tract longer than LC705 during an intervention trial. The presence of mucus-binding pili on the surface of a nonpathogenic Gram-positive bacterial strain reveals a previously undescribed mechanism for the interaction of selected probiotic lactobacilli with host tissues.


Nature Communications | 2015

Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera

Zhihong Sun; Hugh M. B. Harris; Angela McCann; Chenyi Guo; Silvia Argimón; Wenyi Zhang; Xianwei Yang; Ian B. Jeffery; Jakki C. Cooney; Todd F. Kagawa; Wenjun Liu; Yuqin Song; Elisa Salvetti; Agnieszka Wrobel; Pia Rasinkangas; Julian Parkhill; Mary C. Rea; Orla O'Sullivan; Jarmo Ritari; François P. Douillard; R. Paul Ross; Ruifu Yang; Alexandra E. Briner; Giovanna E. Felis; Willem M. de Vos; Rodolphe Barrangou; Todd R. Klaenhammer; Page W. Caufield; Yujun Cui; Heping Zhang

Lactobacilli are a diverse group of species that occupy diverse nutrient-rich niches associated with humans, animals, plants and food. They are used widely in biotechnology and food preservation, and are being explored as therapeutics. Exploiting lactobacilli has been complicated by metabolic diversity, unclear species identity and uncertain relationships between them and other commercially important lactic acid bacteria. The capacity for biotransformations catalysed by lactobacilli is an untapped biotechnology resource. Here we report the genome sequences of 213 Lactobacillus strains and associated genera, and their encoded genetic catalogue for modifying carbohydrates and proteins. In addition, we describe broad and diverse presence of novel CRISPR-Cas immune systems in lactobacilli that may be exploited for genome editing. We rationalize the phylogenomic distribution of host interaction factors and bacteriocins that affect their natural and industrial environments, and mechanisms to withstand stress during technological processes. We present a robust phylogenomic framework of existing species and for classifying new species.


PLOS Genetics | 2013

Comparative Genomic and Functional Analysis of 100 Lactobacillus rhamnosus Strains and Their Comparison with Strain GG

François P. Douillard; Angela Ribbera; Ravi Kant; Taija E. Pietilä; Hanna M. Järvinen; Marcel Messing; Cinzia L. Randazzo; Lars Paulin; Pia Laine; Jarmo Ritari; Cinzia Caggia; Tanja Lähteinen; Stan J. J. Brouns; Reetta Satokari; Ingemar von Ossowski; Justus Reunanen; Airi Palva; Willem M. de Vos

Lactobacillus rhamnosus is a lactic acid bacterium that is found in a large variety of ecological habitats, including artisanal and industrial dairy products, the oral cavity, intestinal tract or vagina. To gain insights into the genetic complexity and ecological versatility of the species L. rhamnosus, we examined the genomes and phenotypes of 100 L. rhamnosus strains isolated from diverse sources. The genomes of 100 L. rhamnosus strains were mapped onto the L. rhamnosus GG reference genome. These strains were phenotypically characterized for a wide range of metabolic, antagonistic, signalling and functional properties. Phylogenomic analysis showed multiple groupings of the species that could partly be associated with their ecological niches. We identified 17 highly variable regions that encode functions related to lifestyle, i.e. carbohydrate transport and metabolism, production of mucus-binding pili, bile salt resistance, prophages and CRISPR adaptive immunity. Integration of the phenotypic and genomic data revealed that some L. rhamnosus strains possibly resided in multiple niches, illustrating the dynamics of bacterial habitats. The present study showed two distinctive geno-phenotypes in the L. rhamnosus species. The geno-phenotype A suggests an adaptation to stable nutrient-rich niches, i.e. milk-derivative products, reflected by the alteration or loss of biological functions associated with antimicrobial activity spectrum, stress resistance, adaptability and fitness to a distinctive range of habitats. In contrast, the geno-phenotype B displays adequate traits to a variable environment, such as the intestinal tract, in terms of nutrient resources, bacterial population density and host effects.


Gut | 2015

Effects of bowel cleansing on the intestinal microbiota

Jonna Jalanka; Anne Salonen; Jarkko Salojärvi; Jarmo Ritari; Outi Immonen; Luca Marciani; Penny A. Gowland; Caroline L. Hoad; Klara Garsed; M.C. Lam; Airi Palva; Robin C. Spiller; W.M. de Vos

Objective An adequate bowel cleansing is essential for a successful colonoscopy. Although purgative consumption is safe for the patient, there is little consensus on how the intestinal microbiota is affected by the procedure, especially regarding the potential long-term consequences. Design 23 healthy subjects were randomised into two study groups consuming a bowel preparation (Moviprep), either in two separate doses of 1 L or as a single 2-L dose. Participants donated faecal samples at the baseline, after bowel cleansing, 14 and 28 days after the treatment. The intestinal microbiota composition was determined with phylogenetic microarray as well as quantitative PCR analysis and correlated with the previously quantified faecal serine proteases. Results The lavage introduced an instant and substantial change to the intestinal microbiota. The total microbial load was decreased by 31-fold and 22% of the participants lost the subject-specificity of their microbiota. While the bacterial levels and community composition were essentially restored within 14 days, the rate of recovery was dose dependent: consumption of the purgative in a single dose had a more severe effect on the microbiota composition than that of a double dose, and notably increased the levels of Proteobacteria, Fusobacteria and bacteria related to Dorea formicigenerans. The abundance of the latter also correlated with the amount of faecal serine proteases that were increased after purging. Conclusions Our results suggest that the bowel cleansing using two separate dosages introduces fewer alterations to the intestinal microbiota than a single dose and hence may be preferred in clinical practice.


PLOS ONE | 2013

Identification and Validation of Human Papillomavirus Encoded microRNAs

Kui Qian; Tuuli Pietilä; Mikko Rönty; Frederic Michon; Mikko J. Frilander; Jarmo Ritari; Jussi Tarkkanen; Lars Paulin; Petri Auvinen; Eeva Auvinen

We report here identification and validation of the first papillomavirus encoded microRNAs expressed in human cervical lesions and cell lines. We established small RNA libraries from ten human papillomavirus associated cervical lesions including cancer and two human papillomavirus harboring cell lines. These libraries were sequenced using SOLiD 4 technology. We used the sequencing data to predict putative viral microRNAs and discovered nine putative papillomavirus encoded microRNAs. Validation was performed for five candidates, four of which were successfully validated by qPCR from cervical tissue samples and cell lines: two were encoded by HPV 16, one by HPV 38 and one by HPV 68. The expression of HPV 16 microRNAs was further confirmed by in situ hybridization, and colocalization with p16INK4A was established. Prediction of cellular target genes of HPV 16 encoded microRNAs suggests that they may play a role in cell cycle, immune functions, cell adhesion and migration, development, and cancer. Two putative viral target sites for the two validated HPV 16 miRNAs were mapped to the E5 gene, one in the E1 gene, two in the L1 gene and one in the LCR region. This is the first report to show that papillomaviruses encode their own microRNA species. Importantly, microRNAs were found in libraries established from human cervical disease and carcinoma cell lines, and their expression was confirmed in additional tissue samples. To our knowledge, this is also the first paper to use in situ hybridization to show the expression of a viral microRNA in human tissue.


Nature Communications | 2015

Production of butyrate from lysine and the Amadori product fructoselysine by a human gut commensal

Thi Phuong Nam Bui; Jarmo Ritari; Pieter de Waard; Caroline M. Plugge; Willem M. de Vos

Human intestinal bacteria produce butyrate, which has signalling properties and can be used as energy source by enterocytes thus influencing colonic health. However, the pathways and the identity of bacteria involved in this process remain unclear. Here we describe the isolation from the human intestine of Intestinimonas strain AF211, a bacterium that can convert lysine stoichiometrically into butyrate and acetate when grown in a synthetic medium. Intestinimonas AF211 also converts the Amadori product fructoselysine, which is abundantly formed in heated foods via the Maillard reaction, into butyrate. The butyrogenic pathway includes a specific CoA transferase that is overproduced during growth on lysine. Bacteria related to Intestinimonas AF211 as well as the genetic coding capacity for fructoselysine conversion are abundantly present in colonic samples from some healthy human subjects. Our results indicate that protein can serve as a source of butyrate in the human colon, and its conversion by Intestinimonas AF211 and related butyrogens may protect the host from the undesired side effects of Amadori reaction products.


Proteomics | 2015

Colonic metaproteomic signatures of active bacteria and the host in obesity.

Carolin Kolmeder; Jarmo Ritari; Froukje J. Verdam; Thilo Muth; Salla Keskitalo; Markku Varjosalo; Susana Fuentes; Jan Willem M. Greve; Wim A. Buurman; Udo Reichl; Erdmann Rapp; Lennart Martens; Airi Palva; Anne Salonen; Sander S. Rensen; W.M. de Vos

Obesity is associated with the intestinal microbiota in humans but the underlying mechanisms are yet to be fully understood. Our previous phylogenetic study showed that the faecal microbiota profiles of nonobese versus obese and morbidly obese individuals differed. Here, we have extended this analysis with a characterization of the faecal metaproteome, in order to detect differences at a functional level. Proteins were extracted from crude faecal samples of 29 subjects, separated by 1D gel electrophoresis and characterized using RP LC–MS/MS. The peptide data were analyzed in database searches with two complementary algorithms, OMSSA and X!Tandem, to increase the number of identifications. Evolutionary genealogy of genes: nonsupervised orthologous groups (EggNOG) database searches resulted in the functional annotation of over 90% of the identified microbial and human proteins. Based on both bacterial and human proteins, a clear clustering of obese and nonobese samples was obtained that exceeded the phylogenetic separation in dimension. Moreover, integration of the metaproteomics and phylogenetic datasets revealed notably that the phylum Bacteroidetes was metabolically more active in the obese than nonobese subjects. Finally, significant correlations between clinical measurements and bacterial gene functions were identified. This study emphasizes the importance of integrating data of the host and microbiota to understand their interactions.


PLOS ONE | 2016

Faecal Metaproteomic Analysis Reveals a Personalized and Stable Functional Microbiome and Limited Effects of a Probiotic Intervention in Adults

Carolin Kolmeder; Jarkko Salojärvi; Jarmo Ritari; Mark de Been; Jeroen Raes; Gwen Falony; Sara Vieira-Silva; Riina A. Kekkonen; Garry L. Corthals; Airi Palva; Anne Salonen; Willem M. de Vos

Recent metagenomic studies have demonstrated that the overall functional potential of the intestinal microbiome is rather conserved between healthy individuals. Here we assessed the biological processes undertaken in-vivo by microbes and the host in the intestinal tract by conducting a metaproteome analysis from a total of 48 faecal samples of 16 healthy adults participating in a placebo-controlled probiotic intervention trial. Half of the subjects received placebo and the other half consumed Lactobacillus rhamnosus GG for three weeks (1010 cfu per day). Faecal samples were collected just before and at the end of the consumption phase as well as after a three-week follow-up period, and were processed for microbial composition and metaproteome analysis. A common core of shared microbial protein functions could be identified in all subjects. Furthermore, we observed marked differences in expressed proteins between subjects that resulted in the definition of a stable and personalized microbiome both at the mass-spectrometry-based proteome level and the functional level based on the KEGG pathway analysis. No significant changes in the metaproteome were attributable to the probiotic intervention. A detailed taxonomic assignment of peptides and comparison to phylogenetic microarray data made it possible to evaluate the activity of the main phyla as well as key species, including Faecalibacterium prausnitzii. Several correlations were identified between human and bacterial proteins. Proteins of the human host accounted for approximately 14% of the identified metaproteome and displayed variations both between and within individuals. The individually different human intestinal proteomes point to personalized host-microbiota interactions. Our findings indicate that analysis of the intestinal metaproteome can complement gene-based analysis and contributes to a thorough understanding of the activities of the microbiome and the relevant pathways in health and disease.


BMC Microbiology | 2012

Molecular analysis of meso- and thermophilic microbiota associated with anaerobic biowaste degradation

Jarmo Ritari; Kaisa Koskinen; Jenni Hultman; Jukka Kurola; Maritta Kymäläinen; Martin Romantschuk; Lars Paulin; Petri Auvinen

BackgroundMicrobial anaerobic digestion (AD) is used as a waste treatment process to degrade complex organic compounds into methane. The archaeal and bacterial taxa involved in AD are well known, whereas composition of the fungal community in the process has been less studied. The present study aimed to reveal the composition of archaeal, bacterial and fungal communities in response to increasing organic loading in mesophilic and thermophilic AD processes by applying 454 amplicon sequencing technology. Furthermore, a DNA microarray method was evaluated in order to develop a tool for monitoring the microbiological status of AD.ResultsThe 454 sequencing showed that the diversity and number of bacterial taxa decreased with increasing organic load, while archaeal i.e. methanogenic taxa remained more constant. The number and diversity of fungal taxa increased during the process and varied less in composition with process temperature than bacterial and archaeal taxa, even though the fungal diversity increased with temperature as well. Evaluation of the microarray using AD sample DNA showed correlation of signal intensities with sequence read numbers of corresponding target groups. The sensitivity of the test was found to be about 1%.ConclusionsThe fungal community survives in anoxic conditions and grows with increasing organic loading, suggesting that Fungi may contribute to the digestion by metabolising organic nutrients for bacterial and methanogenic groups. The microarray proof of principle tests suggest that the method has the potential for semiquantitative detection of target microbial groups given that comprehensive sequence data is available for probe design.


BMC Genomics | 2015

Improved taxonomic assignment of human intestinal 16S rRNA sequences by a dedicated reference database

Jarmo Ritari; Jarkko Salojärvi; Leo Lahti; Willem M. de Vos

BackgroundCurrent sequencing technology enables taxonomic profiling of microbial ecosystems at high resolution and depth by using the 16S rRNA gene as a phylogenetic marker. Taxonomic assignation of newly acquired data is based on sequence comparisons with comprehensive reference databases to find consensus taxonomy for representative sequences. Nevertheless, even with well-characterised ecosystems like the human intestinal microbiota it is challenging to assign genus and species level taxonomy to 16S rRNA amplicon reads. A part of the explanation may lie in the sheer size of the search space where competition from a multitude of highly similar sequences may not allow reliable assignation at low taxonomic levels. However, when studying a particular environment such as the human intestine, it can be argued that a reference database comprising only sequences that are native to the environment would be sufficient, effectively reducing the search space.ResultsWe constructed a 16S rRNA gene database based on high-quality sequences specific for human intestinal microbiota, resulting in curated data set consisting of 2473 unique prokaryotic species-like groups and their taxonomic lineages, and compared its performance against the Greengenes and Silva databases. The results showed that regardless of used assignment algorithm, our database improved taxonomic assignation of 16S rRNA sequencing data by enabling significantly higher species and genus level assignation rate while preserving taxonomic diversity and demanding less computational resources.ConclusionThe curated human intestinal 16S rRNA gene taxonomic database of about 2500 species-like groups described here provides a practical solution for significantly improved taxonomic assignment for phylogenetic studies of the human intestinal microbiota.

Collaboration


Dive into the Jarmo Ritari's collaboration.

Top Co-Authors

Avatar

Lars Paulin

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar

Willem M. de Vos

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Airi Palva

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sudarshan A. Shetty

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge