Jaromir Pastorek
Slovak Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jaromir Pastorek.
Journal of Enzyme Inhibition and Medicinal Chemistry | 2004
Silvia Pastorekova; Seppo Parkkila; Jaromir Pastorek; Claudiu T. Supuran
Carbonic anhydrases (CAs, EC 4.2.1.1) are wide-spread enzymes, present in mammals in at least 14 different isoforms. Some of these isozymes are cytosolic (CA I, CA II, CA III, CA VII, CA XIII), others are membrane-bound (CA IV, CA IX, CA XII and CA XIV), CA V is mitochondrial and CA VI is secreted in the saliva and milk. Three cytosolic acatalytic forms are also known (CARP VIII, CARP X and CARP XI). The catalytically active isoforms, which play important physiological and patho-physiological functions, are strongly inhibited by aromatic and heterocyclic sulfonamides. The catalytic and inhibition mechanisms of these enzymes are understood in great detail, and this greatly helped the design of potent inhibitors, some of which possess important clinical applications. The use of such CA inhibitors (CAIs) as antiglaucoma drugs are discussed in detail, together with the recent developments that led to isozyme-specific and organ-selective inhibitors. A recent discovery is connected with the involvement of CAs and their sulfonamide inhibitors in cancer: many potent CAIs were shown to inhibit the growth of several tumor cell lines in vitro and in vivo, thus constituting interesting leads for developing novel antitumor therapies. Future prospects for drug design of inhibitors of these ubiquitous enzymes are dealt with. Although activation of CAs has been a controversial issue for some time, recent kinetic, spectroscopic and X-ray crystallographic experiments offered an explanation of this phenomenon, based on the catalytic mechanism. It has been demonstrated recently, that molecules that act as carbonic anhydrase activators (CAAs) bind at the entrance of the enzyme active site participating in facilitated proton transfer processes between the active site and the reaction medium. In addition to CA II-activator adducts, X-ray crystallographic studies have been also reported for ternary complexes of this isozyme with activators and anion (azide) inhibitors. Structure-activity correlations for diverse classes of activators is discussed for the isozymes for which the phenomenon has been studied, i.e., CA I, II, III and IV. The possible physiological relevance of CA activation/inhibition is also addressed, together with recent pharmacological/ biomedical applications of such compounds in different fields of life sciences.Carbonic anhydrases (CAs, EC 4.2.1.1) are wide-spread enzymes, present in mammals in at least 14 different isoforms. Some of these isozymes are cytosolic (CA I, CA II, CA III, CA VII, CA XIII), others are membrane-bound (CA IV, CA IX, CA XII and CA XIV), CA V is mitochondrial and CA VI is secreted in the saliva and milk. Three cytosolic acatalytic forms are also known (CARP VIII, CARP X and CARP XI). The catalytically active isoforms, which play important physiological and patho-physiological functions, are strongly inhibited by aromatic and heterocyclic sulfonamides. The catalytic and inhibition mechanisms of these enzymes are understood in great detail, and this greatly helped the design of potent inhibitors, some of which possess important clinical applications. The use of such CA inhibitors (CAIs) as antiglaucoma drugs are discussed in detail, together with the recent developments that led to isozyme-specific and organ-selective inhibitors. A recent discovery is connected with the involvement of CAs and their sulfonamide inhibitors in cancer: many potent CAIs were shown to inhibit the growth of several tumor cell lines in vitro and in vivo, thus constituting interesting leads for developing novel antitumor therapies. Future prospects for drug design of inhibitors of these ubiquitous enzymes are dealt with. Although activation of CAs has been a controversial issue for some time, recent kinetic, spectroscopic and X-ray crystallographic experiments offered an explanation of this phenomenon, based on the catalytic mechanism. It has been demonstrated recently, that molecules that act as carbonic anhydrase activators (CAAs) bind at the entrance of the enzyme active site participating in facilitated proton transfer processes between the active site and the reaction medium. In addition to CA II-activator adducts, X-ray crystallographic studies have been also reported for ternary complexes of this isozyme with activators and anion (azide) inhibitors. Structure-activity correlations for diverse classes of activators is discussed for the isozymes for which the phenomenon has been studied, i.e, CA I, II, III and IV. The possible physiological relevance of CA activation/inhibition is also addressed, together with recent pharmacological/biomedical applications of such compounds in different fields of life sciences.
FEBS Letters | 2004
Eliska Svastova; Alžbeta Hulı́ková; Monika Rafajová; Miriam Zatovicova; Adriana Gibadulinová; Angela Casini; Alessandro Cecchi; Andrea Scozzafava; Claudiu T. Supuran; Jaromir Pastorek; Silvia Pastorekova
Acidic extracellular pH (pHe) is a typical attribute of a tumor microenviroment, which has an impact on cancer development and treatment outcome. It was believed to result from an accumulation of lactic acid excessively produced by glycolysis. However, metabolic profiles of glycolysis‐impaired tumors have revealed that CO2 is a significant source of acidity, thereby indicating a contribution of carbonic anhydrase (CA). The tumor‐associated CA IX isoform is the best candidate, because its extracellular enzyme domain is highly active, expression is induced by hypoxia and correlates with poor prognosis. This study provides the first evidence for the role of CA IX in the control of pHe. We show that CA IX can acidify the pH of the culture medium in hypoxia but not in normoxia. This acidification can be perturbed by deletion of the enzyme active site and inhibited by CA IX‐selective sulfonamides, which bind only to hypoxic cells containing CA IX. Our findings suggest that hypoxia regulates both expression and activity of CA IX in order to enhance the extracellular acidification, which may have important implications for tumor progression.
Journal of Clinical Oncology | 2001
Stephen K. Chia; Charles C. Wykoff; Peter H. Watson; Cheng Han; Russell Leek; Jaromir Pastorek; Kevin C. Gatter; Peter J. Ratcliffe; Adrian L. Harris
PURPOSE To assess the frequency of expression and the prognostic significance of a hypoxia-regulated marker, carbonic anhydrase IX (CA IX), in a cohort of patients with invasive breast cancer. PATIENTS AND METHODS CA IX expression was evaluated by immunohistochemistry with a murine monoclonal antibody, M75, in a series of 103 women treated surgically for invasive breast cancer. The majority of patients were treated with adjuvant hormonal or chemotherapy. The frequency of CA IX expression, its association with recognized prognostic factors, and the relationship with outcome was evaluated by univariate and multivariate statistical analyses. RESULTS CA IX expression was present in 49 (48%) of 103 cases. The level of CA IX expression was found to be significantly associated with tumor necrosis (P <.001), higher grade (P =.02), and negative estrogen receptor status (P <.001). Furthermore, CA IX expression was associated with a higher relapse rate (P =.004) and a worse overall survival (P =.001). By multivariate analysis, CA IX was also shown to be an independent predictive factor for overall survival (hazard ratio, 2.61; 95% confidence interval, 1.01 to 6.75, P =.05). CONCLUSION CA IX expression was associated with worse relapse-free survival and overall survival in an unselected cohort of patients with invasive breast carcinoma. The potential role of CA IX as a marker of hypoxia within breast carcinomas was also indicated by a significant association with necrosis. Further work assessing its prognostic significance in breast cancer is warranted, particularly interactions with radiotherapy and chemotherapy resistance.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Vincenzo Alterio; Mika Hilvo; Anna Di Fiore; Claudiu T. Supuran; Peiwen Pan; Seppo Parkkila; Andrea Scaloni; Jaromir Pastorek; Silvia Pastorekova; Carlo Pedone; Andrea Scozzafava; Simona Maria Monti; Giuseppina De Simone
Carbonic anhydrase (CA) IX is a plasma membrane-associated member of the α-CA enzyme family, which is involved in solid tumor acidification. It is a marker of tumor hypoxia and a prognostic factor in several human cancers. An aberrant increase in CA IX expression in chronic hypoxia and during development of various carcinomas contributes to tumorigenesis through at least two mechanisms: pH regulation and cell adhesion control. Here we report the X-ray structure of the catalytic domain of CA IX in complex with a classical, clinically used sulfonamide inhibitor, acetazolamide. The structure reveals a typical α-CA fold, which significantly differs from the other CA isozymes when the protein quaternary structure is considered. Thus, two catalytic domains of CA IX associate to form a dimer, which is stabilized by the formation of an intermolecular disulfide bond. The active site clefts and the PG domains are located on one face of the dimer, while the C-termini are located on the opposite face to facilitate protein anchoring to the cell membrane. A correlation between the three-dimensional structure and the physiological role of the enzyme is here suggested, based on the measurement of the pH profile of the catalytic activity for the physiological reaction, CO2 hydration to bicarbonate and protons. On the basis of the structural differences observed between CA IX and the other membrane-associated α-CAs, further prospects for the rational drug design of isozyme-specific CA inhibitors are proposed, given that inhibition of this enzyme shows antitumor activity both in vitro and in vivo.
Journal of Clinical Oncology | 2003
Daniel Swinson; J. Louise Jones; Donna Richardson; Charles C. Wykoff; Helen Turley; Jaromir Pastorek; Nick Taub; Adrian L. Harris; Kenneth J. O'Byrne
PURPOSE To evaluate carbonic anhydrase (CA) IX as a surrogate marker of hypoxia and investigate the prognostic significance of different patterns of expression in non-small-cell lung cancer (NSCLC). METHODS Standard immunohistochemical techniques were used to study CA IX expression in 175 resected NSCLC tumors. CA IX expression was determined by Western blotting in A549 cell lines grown under normoxic and hypoxic conditions. Measurements from microvessels to CA IX positivity were obtained. RESULTS CA IX immunostaining was detected in 81.8% of patients. Membranous (m) (P =.005), cytoplasmic (c) (P =.018), and stromal (P <.001) CA IX expression correlated with the extent of tumor necrosis (TN). The mean distance from vascular endothelium to the start of tumor cell positivity was 90 micro m, which equates to an oxygen pressure of 5.77 mmHg. The distance to blood vessels from individual tumor cells or tumor cell clusters was greater if they expressed mCA IX than if they did not (P <.001). Hypoxic exposure of A549 cells for 16 hours enhanced CA IX expression in the nuclear and cytosolic extracts. Perinuclear (p) CA IX (P =.035) was associated with a poor prognosis. In multivariate analysis, pCA IX (P =.004), stage (P =.001), platelet count (P =.011), sex (P =.027), and TN (P =.035) were independent poor prognostic factors. CONCLUSION These results add weight to the contention that mCA IX is a marker of tumor cell hypoxia. The absence of CA IX staining close to microvessels suggests that these vessels are functionally active. pCA IX expression is representative of an aggressive phenotype.
American Journal of Pathology | 1998
Juha Saarnio; Seppo Parkkila; Anna-Kaisa Parkkila; Kari Haukipuro; Silvia Pastorekova; Jaromir Pastorek; Matti I. Kairaluoma; Tuomo J. Karttunen
Carbonic anhydrase isoenzyme IX, MN/CA IX, is a recently discovered member of the carbonic anhydrase (CA) gene family with a suggested function in acid-base balance, intercellular communication, and cell proliferation. Increased expression of MN/CA IX has been observed with certain epithelial tumors. We investigated the expression of MN/CA IX in 69 colorectal neoplasms, consisting of 1 juvenile polyp, 8 hyperplastic polyps, 39 adenomatous lesions, 21 carcinomas, and 7 metastases. Tissue sections were immunostained with a monoclonal antibody specific to MN/CA IX. The proliferative activity of the tumor cells was evaluated by Ki-67 antigen immunoreactivity. The hyperplastic polyps showed a weak or moderate reaction for MN/CA IX only in the cryptal epithelium, as did the normal intestinal mucosa. The adenomas showed immunoreactivity mainly in the superficial part of the mucosa, whereas the distribution in the carcinomas and metastases was more diffuse. Comparative immunostaining of serial sections for Ki-67, a well established marker of cell proliferation, confirmed that MN/CA IX is expressed in areas with high proliferative capacity. Our results show abnormal MN/CA IX expression in colorectal neoplasms, suggesting its involvement in their pathogenesis. The co-occurrence of MN/CA IX and Ki-67 in the same tumor cells indicates its potential for use as a marker of increased proliferation in the colorectal mucosa.
American Journal of Pathology | 2001
Charles C. Wykoff; Nigel J. P. Beasley; Peter H. Watson; Leticia Campo; Stephen K. Chia; Ruth English; Jaromir Pastorek; William S. Sly; Peter J. Ratcliffe; Adrian L. Harris
Carbonic anhydrases (CA) influence intra- and extracellular pH and ion transport in varied biological processes. We recently identified CA9 and CA12 as hypoxia-inducible genes. In this study we examined the expression of these tumor-associated CAs by immunohistochemistry in relation to necrosis and early breast tumor progression in 68 cases of ductal carcinoma in situ (DCIS) (39 pure DCIS and 29 DCIS associated with invasive carcinoma). CA IX expression was rare in normal epithelium and benign lesions, but was present focally in DCIS (50% of cases) and in associated invasive carcinomas (29%). In comparison, CA XII was frequently expressed in normal breast tissues (89%), in DCIS (84%), and in invasive breast lesions (71%). In DCIS, CA IX was associated with necrosis (P: = 0.0053) and high grade (P: = 0.012). In contrast, CA XII was associated with the absence of necrosis (P: = 0.036) and low grade (P: = 0.012). Despite this, augmented CA XII expression was occasionally observed adjacent to necrosis within high-grade lesions. Neither CA IX nor CA XII expression was associated with regional or overall proliferation as determined by MIB1 staining. Assessment of mammographic calcification showed that CA XII expression was associated with the absence of calcification (n = 43, P: = 0.0083). Our results demonstrate that induction of CA IX and CA XII occurs in regions adjacent to necrosis in DCIS. Furthermore, these data suggest that proliferation status does not influence expression of either CA in breast tissues, that hypoxia may be a dominant factor in the regulation of CA IX, and that factors related to differentiation, as determined by tumor grade, dominate the regulation of CA XII. The existence of differential regulation and associations with an aggressive phenotype may be important in the development of selective inhibitors of CAs, because the latter have recently been shown to prevent tumor invasion.
Journal of Biological Chemistry | 2008
Mika Hilvo; Lina Baranauskiene; Anna Maria Salzano; Andrea Scaloni; Daumantas Matulis; Alessio Innocenti; Andrea Scozzafava; Simona Maria Monti; Anna Di Fiore; Giuseppina De Simone; Mikaela Lindfors; Janne Jänis; Jarkko Valjakka; Silvia Pastorekova; Jaromir Pastorek; Markku S. Kulomaa; Henri R. Nordlund; Claudiu T. Supuran; Seppo Parkkila
Carbonic anhydrase IX (CA IX) is an exceptional member of the CA protein family; in addition to its classical role in pH regulation, it has also been proposed to participate in cell proliferation, cell adhesion, and tumorigenic processes. To characterize the biochemical properties of this membrane protein, two soluble recombinant forms were produced using the baculovirus-insect cell expression system. The recombinant proteins consisted of either the CA IX catalytic domain only (CA form) or the extracellular domain, which included both the proteoglycan and catalytic domains (PG + CA form). The produced proteins lacked the small transmembrane and intracytoplasmic regions of CA IX. Stopped-flow spectrophotometry experiments on both proteins demonstrated that in the excess of certain metal ions the PG + CA form exhibited the highest catalytic activity ever measured for any CA isozyme. Investigations on the oligomerization and stability of the enzymes revealed that both recombinant proteins form dimers that are stabilized by intermolecular disulfide bond(s). Mass spectrometry experiments showed that CA IX contains an intramolecular disulfide bridge (Cys119-Cys299) and a unique N-linked glycosylation site (Asn309) that bears high mannose-type glycan structures. Parallel experiments on a recombinant protein obtained by a mammalian cell expression system demonstrated the occurrence of an additional O-linked glycosylation site (Thr78) and characterized the nature of the oligosaccharide structures. This study provides novel information on the biochemical properties of CA IX and may help characterize the various cellular and pathophysiological processes in which this unique enzyme is involved.
BMC Cancer | 2008
Sally Järvelä; Seppo Parkkila; Helena Bragge; Marketta Kähkönen; Anna Kaisa Parkkila; Ylermi Soini; Silvia Pastorekova; Jaromir Pastorek; Hannu Haapasalo
BackgroundCarbonic anhydrase IX is a hypoxia-induced enzyme that has many biologically important functions, including its role in cell adhesion and invasion.MethodsThis study was set out to investigate the role of CA IX in a series of 86 oligodendroglial brain tumors (71 primary and 15 recurrent; 48 pure oligodendrogliomas and 40 mixed oligoastrocytomas).Results80% of the tumors showed CA IX expression by immunohistochemistry. Tumors with moderate or strong CA IX expression had decreased level of cell proliferation compared to weak or no CA IX expression (median 2.9 vs. 5.8, p = 0.015). CA IX correlated with two antioxidative enzymes, manganese superoxide dismutase (MnSOD) and regulatory gammaglutamylcysteine synthetase (GLCL-R): CA IX expression was significantly higher in MnSOD-positive tumors (p = 0.008) and decreased in GLCL-R-positive tumors (p = 0.044). In Cox multivariate analysis CA IX expression, patient age and histological component (pure oligodendroglioma vs. mixed oligoastrocytoma) showed independent prognostic values (p = 0.009, p = 0.003 and p = 0.022, respectively), CA IX positivity predicting poorer outcome.ConclusionCA IX was proved to be an independent prognostic indicator in oligodendroglial brain tumors, and it also correlates reversely with cell proliferation. It may have a role in the biology of oligodendrogliomas, and most interestingly, as it is mainly expressed in tumor tissue, CA IX could serve as a target molecule for anticancer treatments.
Experimental Cell Research | 2003
Eliska Svastova; Norbert Žilka; Miriam Zatovicova; Adriana Gibadulinová; Fedor Čiampor; Jaromir Pastorek; Silvia Pastorekova
Abstract Carbonic anhydrase IX (CA IX) is a cancer-associated transmembrane isoform of zinc metalloenzymes that catalyse interconversion between carbon dioxide and bicarbonate. CA IX is strongly induced by tumor hypoxia and has been proposed to participate in acidification of tumor microenvironment and in cell adhesion. To elucidate the cell adhesion-related role of CA IX, we investigated its subcellular localization and relationship to E-cadherin, a key adhesion molecule whose loss or destabilization is linked to tumor invasion. For this purpose, we generated MDCK cells with constitutive expression of human CA IX protein. During the monolayer formation, CA IX was localized to cell–cell contacts and its distribution in lateral membranes overlapped with E-cadherin. Calcium switch-triggered disruption and reconstitution of cell contacts resulted in relocalization of both CA IX and E-cadherin to cytoplasm and back to plasma membrane. A similar phenomenon was observed in hypoxia-treated and reoxygenated cells. Moreover, CA IX-expressing MDCK cells exhibited reduced cell adhesion capacity and lower levels of Triton-insoluble E-cadherin. Finally, CA IX was found to coprecipitate with β-catenin. We conclude that CA IX has a capacity to modulate E-cadherin-mediated cell adhesion via interaction with β-catenin, which could be of potential significance in hypoxia-induced tumor progression.