Jaroslav Filip
Institute of Chemistry, Slovak Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jaroslav Filip.
Talanta | 2011
Jaroslav Filip; Jana Šefčovičová; Peter Tomčík; Peter Gemeiner; Jan Tkac
A biocompatible nanocomposite consisting of single-walled carbon nanotubes (CNTs) dispersed in a hyaluronic acid (HA) was investigated as a sensing platform for a mediatorless electrochemical detection of NADH. The device was characterised by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and extensively by electrochemistry. CNT-HA bionanocomposite showed more reversible electrochemistry, higher short-term stability of NADH sensing and higher selectivity of NADH detection compared to frequently used CNT-CHI (chitosan) modified GCE. Finally the performance of the sensor modified by CNT-HA was tested in a batch and flow injection analysis (FIA) mode of operation with basic characteristics revealed. The NADH sensor exhibits a good long-term operational stability (95% of the original sensitivity after 22 h of continuous operation). Subsequently a d-sorbitol biosensor based on such a nanoscale built interface was prepared and characterised with a d-sorbitol dehydrogenase used as a biocatalyst.
Langmuir | 2015
Tomas Bertok; Alena Sediva; Jaroslav Filip; Markéta Ilčíková; Peter Kasak; Dusan Velic; Eduard Jane; Martina Mravcová; Jozef Rovenský; Pavol Kunzo; Peter Lobotka; Vasilij Šmatko; Alica Vikartovská; Jan Tkac
Impedimetric lectin biosensors capable of recognizing two different carbohydrates (galactose and sialic acid) in glycans attached to antibodies isolated from human serum were prepared. The first step entailed the modification of a gold surface by a self-assembled monolayer (SAM) deposited from a solution containing a carboxybetaine-terminated thiol applied to the subsequent covalent immobilization of lectins and to resist nonspecific protein adsorption. In the next step, Sambucus nigra agglutinin (SNA) or Ricinus communis agglutinin (RCA) was covalently attached to the SAM, and the whole process of building a bioreceptive layer was optimized and characterized using a diverse range of techniques including electrochemical impedance spectroscopy, cyclic voltammetry, quartz crystal microbalance, contact angle measurements, zeta-potential assays, X-ray photoelectron spectroscopy, and atomic force microscopy. In addition, the application of the SNA-based lectin biosensor in the glycoprofiling of antibodies isolated from the human sera of healthy individuals and of patients suffering from rheumatoid arthritis (RA) was successfully validated using an SNA-based lectin microarray. The results showed that the SNA lectin, in particular, is capable of discriminating between the antibodies isolated from healthy individuals and those from RA patients based on changes in the amount of sialic acid present in the antibodies. In addition, the results obtained by the application of RCA and SNA biosensors indicate that the abundance of galactose and sialic acid in antibodies isolated from healthy individuals is age-related.
Electrochimica Acta | 2017
Lenka Lorencova; Tomas Bertok; Erika Dosekova; Alena Holazova; Darina Paprckova; Alica Vikartovská; Vlasta Sasinková; Jaroslav Filip; Peter Kasak; Monika Jerigova; Dusan Velic; Khaled A. Mahmoud; Jan Tkac
An extensive characterization of pristine and oxidized Ti3C2Tx (T: =O, -OH, -F) MXene showed that exposure of MXene to an anodic potential in the aqueous solution oxidizes the nanomaterial forming TiO2 layer or TiO2 domains with subsequent TiO2 dissolution by F- ions, making the resulting nanomaterial less electrochemically active compared to the pristine Ti3C2Tx. The Ti3C2Tx could be thus applied for electrochemical reactions in a cathodic potential window i.e. for ultrasensitive detection of H2O2 down to nM level with a response time of approx. 10 s. The manuscript also shows electrochemical behavior of Ti3C2Tx modified electrode towards oxidation of NADH and towards oxygen reduction reactions.
Analytica Chimica Acta | 2015
Ludmila Klukova; Tomas Bertok; Miroslava Petrikova; Alena Sediva; Danica Mislovičová; Jaroslav Katrlík; Alica Vikartovská; Jaroslav Filip; Peter Kasak; Anita Andicsová-Eckstein; Jaroslav Mosnáček; Jozef Lukáč; Jozef Rovenský; Richard Imrich; Jan Tkac
Systemic sclerosis (SSc) is an autoimmune disease seriously affecting patients quality of life. The heterogeneity of the disease also means that identification and subsequent validation of biomarkers of the disease is quite challenging. A fully validated single biomarker for diagnosis, prognosis, disease activity and assessment of response to therapy is not yet available. The main aim of this study was to apply an alternative assay protocol to the immunoassay-based analysis of this disease by employment of sialic acid recognizing lectin Sambucus nigra agglutinin (SNA) to glycoprofile serum samples. To our best knowledge this is the first study describing direct lectin-based glycoprofiling of serum SSc samples. Three different analytical methods for glycoprofiling of serum samples relying on application of lectins are compared here from a bioanalytical point of view including traditional ELISA-like lectin-based method (ELLA), novel fluorescent lectin microarrays and ultrasensitive impedimetric lectin biosensors. Results obtained by all three bioanalytical methods consistently showed differences in the level of sialic acid present on glycoproteins, when serum from healthy people was compared to the one from patients having SSc. Thus, analysis of sialic acid content in human serum could be of a diagnostic value for future detection of SSc, but further work is needed to enhance selectivity of assays for example by glycoprofiling of a fraction of human serum enriched in antibodies for individual diagnostics.
Langmuir | 2016
Josef Osicka; Markéta Ilčíková; Anton Popelka; Jaroslav Filip; Tomas Bertok; Jan Tkac; Peter Kasak
A simple fabrication method for preparation of surfaces able to switch from superhydrophobic to superhydrophilic state in a reversible and fast way is described. A self-assembled monolayer (SAM) consisting of quaternary ammonium group with aliphatic tail bearing terminal thiol functionality was created on gold nano/microstructured and gold planar surfaces, respectively. A rough nano/microstructured surface was prepared by galvanic reaction on a silicon wafer. The reversible counterion exchange on the rough surface resulted in a switchable contact angle between <5° and 151°. The prewetted rough surface with Cl(-) as a counterion possesses a superoleophobic underwater character. The kinetics of counterion exchanges suggests a long hydration process and strong electron ion pairing between quaternary ammonium group and perfluorooctanoate counterion. Moreover, a wettability gradient from superhydrophobic to superhydrophilic can be formed on the modified rough gold surface in a robust and simple way by passive incubation of the substrate in a counterion solution and controlled by ionic strength. Furthermore, adsorption of gold nanoparticles to modified plain gold surface can be controlled to a high extent by counterions present on the SAM layer.
Medicinal Research Reviews | 2017
Erika Dosekova; Jaroslav Filip; Tomas Bertok; Peter Both; Peter Kasak; Jan Tkac
This review comprehensively covers the most recent achievements (from 2013) in the successful integration of nanomaterials in the field of glycomics. The first part of the paper addresses the beneficial properties of nanomaterials for the construction of biosensors, bioanalytical devices, and protocols for the detection of various analytes, including viruses and whole cells, together with their key characteristics. The second part of the review focuses on the application of nanomaterials integrated with glycans for various biomedical applications, that is, vaccines against viral and bacterial infections and cancer cells, as therapeutic agents, for in vivo imaging and nuclear magnetic resonance imaging, and for selective drug delivery. The final part of the review describes various ways in which glycan enrichment can be effectively done using nanomaterials, molecularly imprinted polymers with polymer thickness controlled at the nanoscale, with a subsequent analysis of glycans by mass spectrometry. A short section describing an active glycoprofiling by microengines (microrockets) is covered as well.
Chemical Papers | 2015
Jaroslav Filip; Peter Kasak; Jan Tkac
Early diagnosis of diseases with minimal cost and time-consumption has become achievable due to recent advances in the development of biosensors. These devices use biorecognition elements for the selective interaction with an analyte and the signal read-out is obtained via different types of transducers. The operational characteristics of biosensors have been reported as improving substantially when a diverse range of nanomaterials is employed. This review presents the construction of electrochemical biosensors based on graphene, atomically thin 2D carbon crystals, a nanomaterial currently the subject of intensive studies. Here, the most attractive directions for graphene applications in biosensor preparation are discussed, including novel detection and amplification schemes exploiting graphene’s unique electrochemical, physical and chemical properties. There is probably a very bright future for graphene-based biosensors, but much further work is required to fulfill the high expectations.
Bioelectrochemistry | 2014
Jaroslav Filip; Jan Tkac
This is the first study showing pH dependence of three distinct redox sites within bilirubin oxidase (BOD) adsorbed on a nanocomposite modified electrode. The 1st redox centre with the highest redox potential Ec(1st)=404 mV vs. Ag/AgCl (614 mV vs. NHE at pH7.0) exhibited pH dependence with a slope -dEc(1st)/dpH=66(±3) mV under a non-turnover process. The 2nd redox centre with a potential Ec(2nd)=228 mV vs. Ag/AgCl (438 mV vs. NHE at pH7.0) was not dependent on pH in the absence and presence of O2. Finally, the 3rd redox site with a redox potential Ec(3rd)=92 mV vs. Ag/AgCl (302 mV vs. NHE at pH7.0) exhibited pH dependence for a cathodic process with -dEc(3rd)/dpH=70(±6) mV and for anodic process with -dEa(3rd)/dpH=73(±2) mV, respectively. Moreover, two break points for dependence of Ec(1st) or Ec(3rd) on pH were observed for the 1st (T1) site and the 3rd site assigned to involvement of two acidic amino acids (Asp105 and Glu463). A diagram of a potential difference between cathodic peaks of BOD as a dependence on pH is shown. The results obtained can be of interest for construction of biofuel cells based on BOD such as for generation of a low level of electricity from body fluids.
Biosensors and Bioelectronics | 2017
Jaroslav Filip; Anita Andicsová-Eckstein; Alica Vikartovská; Jan Tkac
Previously we showed that an effective bilirubin oxidase (BOD)-based biocathode using graphene oxide (GO) could be prepared in 2 steps: 1. electrostatic adsorption of BOD on GO; 2. electrochemical reduction of the BOD-GO composite to form a BOD-ErGO (electrochemically reduced GO) film on the electrode. In order to identify an optimal charge density of GO for BOD-ErGO composite preparation, several GO fractions differing in an average flake size and ζ-potential were prepared using centrifugation and consequently employed for BOD-ErGO biocathode preparation. A simple way to express surface charge density of these particular GO nanosheets was developed. The values obtained were then correlated with biocatalytic and electrochemical parameters of the prepared biocathodes, i.e. electrocatalytically active BOD surface coverage (Γ), heterogeneous electron transfer rate (kS) and a maximum biocatalytic current density. The highest bioelectrocatalytic current density of (597±25)μAcm-2 and the highest Γ of (23.6±0.9)pmolcm-2 were obtained on BOD-GO composite having the same moderate negative charge density, but the highest kS of (79.4±4.6)s-1 was observed on BOD-GO composite having different negative charge density. This study is a solid foundation for others to consider the influence of a charge density of GO on direct bioelectrochemistry/bioelectrocatalysis of other redox enzymes applicable for construction of biosensors, bioanodes, biocathodes or biofuel cells.
Biotechnology Letters | 2017
Milan Polakovič; Juraj Švitel; Marek Bučko; Jaroslav Filip; Vilém Neděla; Marion B. Ansorge-Schumacher; Peter Gemeiner
Viable microbial cells are important biocatalysts in the production of fine chemicals and biofuels, in environmental applications and also in emerging applications such as biosensors or medicine. Their increasing significance is driven mainly by the intensive development of high performance recombinant strains supplying multienzyme cascade reaction pathways, and by advances in preservation of the native state and stability of whole-cell biocatalysts throughout their application. In many cases, the stability and performance of whole-cell biocatalysts can be highly improved by controlled immobilization techniques. This review summarizes the current progress in the development of immobilized whole-cell biocatalysts, the immobilization methods as well as in the bioreaction engineering aspects and economical aspects of their biocatalytic applications.