Jarosław Śmieja
Silesian University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jarosław Śmieja.
Frontiers in Pharmacology | 2016
Karolina Pytka; Klaudia Lustyk; Elżbieta Żmudzka; Magdalena Kotańska; Agata Siwek; Małgorzata Zygmunt; Agnieszka Dziedziczak; Joanna Śniecikowska; Adrian Olczyk; Adam Galuszka; Jarosław Śmieja; Anna M. Waszkielewicz; Henryk Marona; Barbara Filipek; Jacek Sapa; Szczepan Mogilski
Studies proved that among all α1-adrenoceptors, cardiac myocytes functionally express only α1A- and α1B-subtype. Scientists indicated that α1A-subtype blockade might be beneficial in restoring normal heart rhythm. Therefore, we aimed to determine the role of α1-adrenoceptors subtypes (i.e., α1A and α1B) in antiarrhythmic effect of six structurally similar derivatives of 2-methoxyphenylpiperazine. We compared the activity of studied compounds with carvedilol, which is β1- and α1-adrenoceptors blocker with antioxidant properties. To evaluate the affinity for adrenergic receptors, we used radioligand methods. We investigated selectivity at α1-adrenoceptors subtypes using functional bioassays. We tested antiarrhythmic activity in adrenaline-induced (20 μg/kg i.v.), calcium chloride-induced (140 and 25 mg/kg i.v.) and barium chloride-induced (32 and 10 mg/kg i.v.) arrhythmia models in rats. We also evaluated the influence of studied compounds on blood pressure in rats, as well as lipid peroxidation. All studied compounds showed high affinity toward α1-adrenoceptors but no affinity for β1 receptors. Biofunctional studies revealed that the tested compounds blocked α1A-stronger than α1B-adrenoceptors, but except for HBK-19 they antagonized α1A-adrenoceptor weaker than α1D-subtype. HBK-19 showed the greatest difference in pA2 values—it blocked α1A-adrenoceptors around seven-fold stronger than α1B subtype. All compounds showed prophylactic antiarrhythmic properties in adrenaline-induced arrhythmia, but only the activity of HBK-16, HBK-17, HBK-18, and HBK-19 (ED50 = 0.18–0.21) was comparable to that of carvedilol (ED50 = 0.36). All compounds reduced mortality in adrenaline-induced arrhythmia. HBK-16, HBK-17, HBK-18, and HBK-19 showed therapeutic antiarrhythmic properties in adrenaline-induced arrhythmia. None of the compounds showed activity in calcium chloride- or barium chloride-induced arrhythmias. HBK-16, HBK-17, HBK-18, and HBK-19 decreased heart rhythm at ED84. All compounds significantly lowered blood pressure in normotensive rats. HBK-18 showed the strongest hypotensive properties (the lowest active dose: 0.01 mg/kg). HBK-19 was the only compound in the group, which did not show hypotensive effect at antiarrhythmic doses. HBK-16, HBK-17, HBK-18, HBK-19 showed weak antioxidant properties. Our results indicate that the studied 2-methoxyphenylpiperazine derivatives that possessed stronger α1A-adrenolytic properties (i.e., HBK-16, HBK-17, HBK-18, and HBK-19) were the most active compounds in adrenaline-induced arrhythmia. Thus, we suggest that the potent blockade of α1A-receptor subtype is essential to attenuate adrenaline-induced arrhythmia.
International Journal of Applied Mathematics and Computer Science | 2008
Jarosław Śmieja
Model Based Analysis of Signaling Pathways The paper is concerned with application of mathematical modeling to the analysis of signaling pathways. Two issues, deterministic modeling of gene transcription and model-driven discovery of regulatory elements, are dealt with. First, the biological background is given and the importance of the stochastic nature of biological processes is addressed. The assumptions underlying deterministic modeling are presented. Special emphasis is put on describing gene transcription. A framework for including unknown processes activating gene transcription by means of first-order lag elements is introduced and discussed. Then, a particular interferon-β induced pathway is introduced, limited to early events that precede activation of gene transcription. It is shown how to simplify the system description based on the goals of modeling. Further, a computational analysis is presented, facilitating better understanding of the mechanisms underlying regulation of key components in the pathway. The analysis is illustrated by a comparison of simulation and experimental data.
International Journal of Applied Mathematics and Computer Science | 2010
Jarosław Śmieja
Coupled analytical and numerical approach to uncovering new regulatory mechanisms of intracellular processes The paper deals with the analysis of signaling pathways aimed at uncovering new regulatory processes regulating cell responses. First, general issues of comparing simulation and experimental data are discussed, and various aspects of data normalization are covered. Then, a model of a particular signaling pathway, induced by Interferon-β, is briefly introduced. It serves as an example illustrating how mathematical modeling can be used for inferring the structure of a regulatory system governing the dynamics of intracellular processes. In this pathway, experimental results suggest that a hitherto unknown process is responsible for a decrease in the levels of one of the important molecules used in the pathway. Then, equilibrium points of the model are analyzed, allowing the rejection of all but one explanation of the phenomena observed experimentally. Numerical simulations confirm that the model can mimic the dynamics of the processes in the pathway under consideration. Finally, some remarks about the applicability of the method based on an analysis of equilibrium points are made.
IFAC Proceedings Volumes | 2009
Jarosław Śmieja
Abstract The paper presents advantages and drawbacks of mathematical modeling in building and testing hypotheses concerning structure of regulatory networks. The simulation results clearly show advantages of mathematical modeling. Its application yields good results, in particular in rejection of hypotheses, as it is relatively easy to build and subsequently analyze properties of models of regulatory processes in the pathway. This undoubtedly helps to save resources which would otherwise be devoted to experimental testing of the hypotheses. Through analysis of dynamics of unknown processes, mathematical models can indicate how to find either completely new molecules or unveil new roles of the known ones. Though very helpful in biomedical field, mathematical modeling must be used very carefully and in a supervised mode. When unsupervised automatic methods are applied, they are usually based on minimization of a performance index defined as a squared distance between simulation and experimental data. Such approach can lead to acceptance of models that exhibit dynamical behavior that is qualitatively different from the one observed experimentally.
PLOS Computational Biology | 2018
Malgorzata Kardynska; Anna Paszek; Jarosław Śmieja; David G. Spiller; Wieslawa Widlak; Michael R. H. White; Pawel Paszek; Marek Kimmel
Elevated temperature induces the heat shock (HS) response, which modulates cell proliferation, apoptosis, the immune and inflammatory responses. However, specific mechanisms linking the HS response pathways to major cellular signaling systems are not fully understood. Here we used integrated computational and experimental approaches to quantitatively analyze the crosstalk mechanisms between the HS-response and a master regulator of inflammation, cell proliferation, and apoptosis the Nuclear Factor κB (NF-κB) system. We found that populations of human osteosarcoma cells, exposed to a clinically relevant 43°C HS had an attenuated NF-κB p65 response to Tumor Necrosis Factor α (TNFα) treatment. The degree of inhibition of the NF-κB response depended on the HS exposure time. Mathematical modeling of single cells indicated that individual crosstalk mechanisms differentially encode HS-mediated NF-κB responses while being consistent with the observed population-level responses. In particular “all-or-nothing” encoding mechanisms were involved in the HS-dependent regulation of the IKK activity and IκBα phosphorylation, while others involving transport were “analogue”. In order to discriminate between these mechanisms, we used live-cell imaging of nuclear translocations of the NF-κB p65 subunit. The single cell responses exhibited “all-or-nothing” encoding. While most cells did not respond to TNFα stimulation after a 60 min HS, 27% showed responses similar to those not receiving HS. We further demonstrated experimentally and theoretically that the predicted inhibition of IKK activity was consistent with the observed HS-dependent depletion of the IKKα and IKKβ subunits in whole cell lysates. However, a combination of “all-or-nothing” crosstalk mechanisms was required to completely recapitulate the single cell data. We postulate therefore that the heterogeneity of the single cell responses might be explained by the cell-intrinsic variability of HS-modulated IKK signaling. In summary, we show that high temperature modulates NF-κB responses in single cells in a complex and unintuitive manner, which needs to be considered in hyperthermia-based treatment strategies.
Frontiers in Pharmacology | 2018
Karolina Pytka; Monika Głuch-Lutwin; Elżbieta Żmudzka; Kinga Sałaciak; Agata Siwek; Katarzyna Niemczyk; Maria Walczak; Magdalena Smolik; Adrian Olczyk; Adam Galuszka; Jarosław Śmieja; Barbara Filipek; Jacek Sapa; Marcin Kołaczkowski; Katarzyna Pańczyk; Anna M. Waszkielewicz; Henryk Marona
Numerous studies have proven that both stimulation and blockade of 5-HT1A and the blockade of 5-HT7 receptors might cause the anxiolytic-like effects. Biased agonists selectively activate specific signaling pathways. Therefore, they might offer novel treatment strategies. In this study, we investigated the anxiolytic-like activity, as well as the possible mechanism of action of 1-[(2,5-dimethylphenoxy)propyl]-4-(2-methoxyphenyl)piperazine hydrochloride (HBK-17). In our previous experiments, HBK-17 showed high affinity for 5-HT1A and 5-HT7 receptors and antidepressant-like properties. We performed the four plate test and the elevated plus maze test to determine anxiolytic-like activity. Toward a better understanding of the pharmacological properties of HBK-17 we used various functional assays to determine its intrinsic activity at 5-HT1A, 5-HT2A, 5-HT7, and D2 receptors and UHPLC-MS/MS method to evaluate its pharmacokinetic profile. We observed the anxiolytic-like activity of HBK-17 in both behavioral tests and the effect was reversed by the pretreatment with WAY-100635, which proves that 5-HT1A receptor activation was essential for the anxiolytic-like effect. Moreover, the compound moderately antagonized D2, weakly 5-HT7 and very weakly 5-HT2A receptors. We demonstrated that HBK-17 preferentially activated ß-arrestin signaling after binding to the 5-HT1A receptor. HBK-17 was rapidly absorbed after intraperitoneal administration and had a half-life of about 150 min. HBK-17 slightly penetrated the peripheral compartment and showed bioavailability of approximately 45%. The unique pharmacological profile of HBK-17 encourages further experiments to understand its mechanism of action fully.
Propagation Phenomena in Real World Networks | 2015
Damian Borys; Roman Jaksik; Michał Krześlak; Jarosław Śmieja; Andrzej Świerniak
We discuss problems related to propagation phenomena in biological networks. As an example we consider processes leading to carcinogenesis and development of cancer, seen as a complex genetic disease from a system theoretic point of view. We present particular regulatory mechanisms which make the cell cycle a fault tolerant system. Then we indicate weak points in this system leading to mutagenesis and cancer progression. The next stage in this cascade of events is related to an angiogenic switch, which in turn may be treated as a trigger of metastasis. All these processes result from communication, competition and subordination between normal and cancer cells. We illustrate interaction processes by models based on evolutionary games and spatial evolutionary games, which describe propagation phenomena in time and space.
International Journal of Applied Mathematics and Computer Science | 2003
Jarosław Śmieja; Andrzej Świerniak
Journal of Medical Informatics and Technologies | 2004
Andrzej Świerniak; Marek Kimmel; Jarosław Śmieja; J. Rzeszowska-Wolny
Journal of Medical Informatics and Technologies | 2002
Jarosław Śmieja; Andrzej Świerniak