Jarrad Begg
University of New South Wales
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jarrad Begg.
Medical Physics | 2016
Gary P Liney; Bin Dong; Jarrad Begg; Philip Vial; K Zhang; Frederick J. Lee; Amy Walker; Roshika Rai; Trent Causer; Sarah Alnaghy; Bradley M. Oborn; Lois C Holloway; Peter E Metcalfe; Michael Barton; Stuart Crozier; P Keall
PURPOSE The pursuit of real-time image guided radiotherapy using optimal tissue contrast has seen the development of several hybrid magnetic resonance imaging (MRI)-treatment systems, high field and low field, and inline and perpendicular configurations. As part of a new MRI-linac program, an MRI scanner was integrated with a linear accelerator to enable investigations of a coupled inline MRI-linac system. This work describes results from a prototype experimental system to demonstrate the feasibility of a high field inline MR-linac. METHODS The magnet is a 1.5 T MRI system (Sonata, Siemens Healthcare) was located in a purpose built radiofrequency (RF) cage enabling shielding from and close proximity to a linear accelerator with inline (and future perpendicular) orientation. A portable linear accelerator (Linatron, Varian) was installed together with a multileaf collimator (Millennium, Varian) to provide dynamic field collimation and the whole assembly built onto a stainless-steel rail system. A series of MRI-linac experiments was performed to investigate (1) image quality with beam on measured using a macropodine (kangaroo) ex vivo phantom; (2) the noise as a function of beam state measured using a 6-channel surface coil array; and (3) electron contamination effects measured using Gafchromic film and an electronic portal imaging device (EPID). RESULTS (1) Image quality was unaffected by the radiation beam with the macropodine phantom image with the beam on being almost identical to the image with the beam off. (2) Noise measured with a surface RF coil produced a 25% elevation of background intensity when the radiation beam was on. (3) Film and EPID measurements demonstrated electron focusing occurring along the centerline of the magnet axis. CONCLUSIONS A proof-of-concept high-field MRI-linac has been built and experimentally characterized. This system has allowed us to establish the efficacy of a high field inline MRI-linac and study a number of the technical challenges and solutions.
Radiotherapy and Oncology | 2015
Elise M. Pogson; Jarrad Begg; M. Jameson; Claire Dempsey; Drew Latty; Vikneswary Batumalai; Andrew Lim; Kankean Kandasamy; Peter E Metcalfe; Lois C Holloway
In this paper, the highest level of inter- and intra-observer conformity achievable with different treatment planning systems (TPSs), contouring tools, shapes, and sites have been established for metrics including the Dice similarity coefficient (DICE) and Hausdorff Distance. High conformity values, e.g. DICE(Breast_Shape)=0.99±0.01, were achieved. Decreasing image resolution decreased contouring conformity.
Medical Physics | 2018
Sarah Alnaghy; Jarrad Begg; Trent Causer; Thahabah Alharthi; Laura Glaubes; Bin Dong; Armia George; Lois C Holloway; Peter E Metcalfe
PURPOSE Longitudinal magnetic fields narrow beam penumbra and tighten lateral spread of secondary electrons in air cavities, including lung tissue. Gafchromic® EBT3 film was used to investigate differences between penumbra in solid water and solid lung, without a magnetic field (0 T) and with two field strengths (0.9 and 1.5 T). METHODS The first prototype of the Australian MRI-linac consisted of a 1.5 T Siemens Sonata MRI and Varian industrial linatron (nominal 4 MV). The second prototype replaced the Sonata with a 1.0 T Agilent split-bore magnet. Measurements were completed at 0.9 T to maintain the same source-to-surface distance between set-ups. Gammex-rmi® solid water with 50 mm of CIRS solid lung inserted as a lung cavity was positioned inside each magnet. This was compared to the same set-up with solid water only, where film measurements were completed at solid water equivalent depths corresponding to entrance interface/mid/exit interface positions of solid lung from the first set-up. Multileaf collimator (MLC)-defined field sizes were set to 3 × 3 cm2 and 10 × 10 cm2 . The 80%-20% penumbral width was determined. RESULTS Under 1.5 T conditions, penumbra narrowing occurred up to 4.4 ± 0.1 mm compared to 0 T. As expected, the effect was less for 0.9 T, which resulted in a maximum narrowing of 2.5 ± 0.1 mm. Exit profile penumbra were more affected than entrance penumbra by up to 2.6 ± 0.2 mm. The 1.5 T field brought the solid water and lung penumbral widths more into alignment by a maximum difference of 0.4 ± 0.1 mm. CONCLUSIONS The trimming of penumbral widths due to magnetic fields in solid water and lung was demonstrated and compared to 0 T. The 0.9 and 1.5 T field trimmed the penumbra by up to 2.5 ± 0.1 mm and 4.4 ± 0.1 mm respectively.
Journal of Physics: Conference Series | 2017
Peter E Metcalfe; Sarah Alnaghy; Matthew Newall; Maegan Gargett; Mitchell Duncan; Gary P Liney; Jarrad Begg; Bradley M. Oborn; Marco Petasecca; Michael L. F Lerch; Anatoly B. Rosenfeld
The new era of intra-fraction dose tracking in radiation therapy delivery demands new dosimetry methods, whereby a moving frame of reference as a function of time may be required. This introduces a new paradigm into radiation therapy dose verification. The term we propose to describe this is dynamic dosimaging, which by our definition is tracking the location of a dosimeter array in real time during on-line radiation dose acquisition.
Journal of Physics: Conference Series | 2017
Jarrad Begg; Armia George; Sarah Alnaghy; Trent Causer; Thahabah Alharthi; Laura Glaubes; Bosheng Dong; Gary Goozee; Gary P Liney; Lois C Holloway; P Keall
The Australian MRI-Linac consists of a fixed horizontal photon beam combined with a MRI. Commissioning required PDD and profiles measured in a horizontal set-up using a combination of water tank measurements and gafchromic film. To validate the methodology, measurements were performed comparing PDD and profiles measured with the gantry angle set to 0 and 90° on a conventional linac. Results showed agreement to within 2.0% for PDD measured using both film and the water tank at gantry 90° relative to PDD acquired using gantry 0°. Profiles acquired using a water tank at both gantry 0 and 90° showed agreement in FWHM to within 1 mm. The agreement for both PDD and profiles measured at gantry 90° relative to gantry 0° curves indicates that the methodology described can be used to acquire the necessary beam data for horizontal beam lines and in particular, commissioning the Australian MRI-linac.
Medical Physics | 2016
P Keall; B Dong; Philip Vial; A Walker; K Zhang; Jarrad Begg; Roshika Rai; Lois C Holloway; Michael Barton; Stuart Crozier; Gary P Liney
PURPOSE The pursuit of real-time image guided radiotherapy using optimal tissue contrast has seen the development of several hybrid MRI-treatment systems, high field and low field, and inline and perpendicular configurations. As part of a new MRI-Linac program, an MRI scanner was integrated with a linear accelerator to enable investigations of a coupled inline MRI-Linac system. This work describes our experimental results from the first high-field inline MRI-Linac. METHODS A 1.5 Tesla magnet (Sonata, Siemens) was located in a purpose built RF cage enabling shielding from and close proximity to a linear accelerator with inline orientation. A portable linear accelerator (Linatron, Varian) was installed together with a multi-leaf collimator (Millennium, Varian) to provide dynamic field collimation and the whole assembly built onto a stainless-steel rail system. A series of MRI-Linac experiments was performed to investigate: (1) image quality with beam on measured using a macropodine (kangaroo) ex vivo phantom; (2) the noise as a function of beam state measured using a 6-channel surface coil array and; (3) electron focusing measured using GafChromic film. RESULTS (1) The macropodine phantom image quality with the beam on was almost identical to that with the beam off. (2) Noise measured with a surface RF coil produced a 25% elevation of background noise when the radiation beam was on. (3) Film measurements demonstrated electron focusing occurring at the center of the radiation field. CONCLUSION The first high-field MRI-Linac has been built and experimentally characterized. This system has allowed us to establish the efficacy of a high field in-line MRI-Linac and study a number of the technical challenges and solutions. Supported by the Australian National Health and Medical Research Council, the Australian Research Council, the Australian Cancer Research Foundation and the Health and Hospitals Fund.
Medical Physics | 2012
Brendan Whelan; Shivani Kumar; Jason Dowling; J Lambert; Karen Lim; Olivier Salvado; Jarrad Begg; Peter B. Greer; Shalini K Vinod; Lois C Holloway
PURPOSE A sensitivity analysis of the effect of variations in electron density data (ED) on dose calculation accuracy for MRI based cervical cancer treatment planning. METHODS Five cervical cancer patients were analysed in this work. Planning CT scans represented gold standard ED data. Standard four field 3DCRT plans (prescription 45Gy) were designed on these CT scans. The CT data was then manipulated to simulate the following methods of assigning ED to MRI; (1) homogenous bulk density corrections, (2) Bulk density correction to bones, (3) rigid image registration of CT to MR, and (4) regression analysis based pseudo CT. Plans were then generated on the manipulated data sets, and compared to the plans generated on the original. Dose was analysed using Chi analysis and equivalent uniform dose (EUD). Data was analysed to quantify (A) the effect on plan design (called optimisation error), and (B) the effect on dose calculation accuracy (systematic error). RESULTS Analysis of the averaged patient results showed that for 3DCRT, the use of imperfect electron density data had minimal impact on plan design for all tested data sets. Analysis of systematic error showed minimal errors for cases (1), (2) and (3), where average errors of less than 0.3 Gy in EUD were recorded and Chi analysis showed that over 95% of points within the high dose region (D>36Gy) were within 2% or 2mm of the original dose. For case (4), errors greater than .5 Gy in EUD were recorded; these were not considered acceptable errors. CONCLUSIONS Using imperfect electron density data for 3DCRT treatment planning for cervical cancer patients is feasible for appropriately considered choices of electron density assignment. Further analysis is needed to test this result for IMRT, and is ongoing.
Australasian Physical & Engineering Sciences in Medicine | 2015
Brendan Whelan; Shivani Kumar; Jason Dowling; Jarrad Begg; Jonathan Lambert; Karen Lim; Shalini K Vinod; Peter B. Greer; Lois C Holloway
Australasian Physical & Engineering Sciences in Medicine | 2016
Sarah Alnaghy; Maegan Gargett; Gary P Liney; Marco Petasecca; Jarrad Begg; Anthony A Espinoza; Matthew Newall; Mitchell Duncan; Lois C Holloway; Michael L. F Lerch; Mircea Lazea; Anatoly B. Rosenfeld; Peter E Metcalfe
Radiotherapy and Oncology | 2018
U. Jelen; Jarrad Begg; Gary P Liney; B. Dong; K. Zhang; Brendan Whelan; Lois C Holloway; P Keall