Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jarrod A. Call is active.

Publication


Featured researches published by Jarrod A. Call.


Journal of Applied Physiology | 2008

Endurance capacity in maturing mdx mice is markedly enhanced by combined voluntary wheel running and green tea extract

Jarrod A. Call; Kevin A. Voelker; Andrew Vincent Wolff; Ryan P. McMillan; Nicholas P. Evans; Matthew W. Hulver; Robert J. Talmadge; Robert W. Grange

Duchenne muscular dystrophy is characterized by the absence of dystrophin from muscle cells. Dystrophic muscle cells are susceptible to oxidative stress. We tested the hypothesis that 3 wk of endurance exercise starting at age 21 days in young male mdx mice would blunt oxidative stress and improve dystrophic skeletal muscle function, and these effects would be enhanced by the antioxidant green tea extract (GTE). In mice fed normal diet, average daily running distance increased 300% from week 1 to week 3, and total distance over 3 wk was improved by 128% in mice fed GTE. Running, independent of diet, increased serum antioxidant capacity, extensor digitorum longus tetanic stress, and total contractile protein content, heart citrate synthase, and heart and quadriceps beta-hydroxyacyl-CoA dehydrogenase activities. GTE, independent of running, decreased serum creatine kinase and heart and gastrocnemius lipid peroxidation and increased gastrocnemius citrate synthase activity. These data suggest that both endurance exercise and GTE may be beneficial as therapeutic strategies to improve muscle function in mdx mice.


Exercise and Sport Sciences Reviews | 2007

Recommendations to Define Exercise Prescription for Duchenne Muscular Dystrophy

Robert W. Grange; Jarrod A. Call

Duchenne muscular dystrophy yields pervasive and progressive muscle weakness. This weakness may be attenuated by regular, low-intensity exercise. However, there is a critical lack of data to support appropriate exercise prescription. Because inappropriate activity may exacerbate the dystrophic process, a systematic analysis of muscle function to determine potential exercise load thresholds to avoid injury in dystrophic mice and dogs, and then in humans, is recommended.


Muscle & Nerve | 2010

Progressive resistance voluntary wheel running in the mdx mouse

Jarrod A. Call; James N. Mckeehen; Susan A. Novotny; Dawn A. Lowe

Exercise training has been minimally explored as a therapy to mitigate the loss of muscle strength for individuals with Duchenne muscular dystrophy (DMD). Voluntary wheel running is known to elicit beneficial adaptations in the mdx mouse model for DMD. The aim of this study was to examine progressive resistance wheel running in mdx mice by comprehensively testing muscle function before, during, and after a 12‐week training period. Male mdx mice at ∽4 weeks age were randomized into three groups: Sedentary, Free Wheel, and Resist Wheel. Muscle strength was assessed via in vivo dorsiflexion torque, grip strength, and whole body tension intermittently throughout the training period. Contractility of isolated soleus muscles was analyzed at the studys conclusion. Both Free and Resist Wheel mice had greater grip strength (∽22%) and soleus muscle specific tetanic force (26%) compared with Sedentary mice. This study demonstrates that two modalities of voluntary exercise are beneficial to dystrophic muscle and may help establish parameters for an exercise prescription for DMD. Muscle Nerve 42: 871–880, 2010


Muscle & Nerve | 2009

Effects of prednisolone on skeletal muscle contractility in mdx mice.

Kristen A. Baltgalvis; Jarrod A. Call; Jason B. Nikas; Dawn A. Lowe

Current treatment for Duchenne muscular dystrophy (DMD) is chronic administration of the glucocorticoid prednisolone. Prednisolone improves muscle strength in boys with DMD, but the mechanism is unknown. The purpose of this study was to determine how prednisolone improves muscle strength by examining muscle contractility in dystrophic mice over time and in conjunction with eccentric injury. Mdx mice began receiving prednisolone (n = 23) or placebo (n = 16) at 5 weeks of age. Eight weeks of prednisolone increased specific force of the extensor digitorum longus muscle 26%, but other parameters of contractility were not affected. Prednisolone also improved the histological appearance of muscle by decreasing the number of centrally nucleated fibers. Prednisolone treatment did not affect force loss during eccentric contractions or recovery of force following injury. These data are of clinical relevance, because the increase in muscle strength in boys with DMD taking prednisolone does not appear to occur via the same mechanism in dystrophic mice. Muscle Nerve, 2009


Muscle & Nerve | 2011

EXERCISE AND DUCHENNE MUSCULAR DYSTROPHY: TOWARD EVIDENCE-BASED EXERCISE PRESCRIPTION

Chad D. Markert; Fabrisia Ambrosio; Jarrod A. Call; Robert W. Grange

To develop a rational framework for answering questions about the role of exercise in Duchenne muscular dystrophy (DMD), we focused on five pathophysiological mechanisms and offer brief hypotheses regarding how exercise may beneficially modulate pertinent cellular and molecular pathways. We aimed to provide an integrative overview of mechanisms of DMD pathology that may improve or worsen as a result of exercise. We also sought to stimulate discussion of what outcomes/dependent variables most appropriately measure these mechanisms, with the purpose of defining criteria for well‐designed, controlled studies of exercise in DMD. The five mechanisms include pathways that are both intrinsic and extrinsic to the diseased muscle cells. Muscle Nerve 43: 464–478, 2011


Clinical Nutrition | 2010

Green tea extract decreases muscle pathology and NF-κB immunostaining in regenerating muscle fibers of mdx mice

Nicholas P. Evans; Jarrod A. Call; Josep Bassaganya-Riera; John L. Robertson; Robert W. Grange

BACKGROUND & AIMS Duchenne muscular dystrophy is a debilitating genetic disorder characterized by severe muscle wasting and early death in afflicted boys. The primary cause of this disease is mutations in the dystrophin gene resulting in massive muscle degeneration and inflammation. The purpose of this study was to determine if dystrophic muscle pathology and inflammation were decreased by pre-natal and early dietary intervention with green tea extract. METHODS Mdx breeder mice and pups were fed diets containing 0.25% or 0.5% green tea extract and compared to untreated mdx and C57BL/6J mice. Serum creatine kinase was assessed as a systemic indicator of muscle damage. Quantitative histopathological and immunohistochemical techniques were used to determine muscle pathology, macrophage infiltration, and NF-kappaB localization. RESULTS Early treatment of mdx mice with green tea extract significantly decreased serum creatine kinase by approximately 85% at age 42 days (P< or =0.05). In these mice, the area of normal fiber morphology was increased by as much as approximately 32% (P< or =0.05). The primary histopathological change was a approximately 21% decrease in the area of regenerating fibers (P< or =0.05). NF-kappaB staining in regenerating muscle fibers was also significantly decreased in green tea extract-treated mdx mice when compared to untreated mdx mice (P< or =0.05). CONCLUSION Early treatment with green tea extract decreases dystrophic muscle pathology potentially by regulating NF-kappaB activity in regenerating muscle fibers.


Human Molecular Genetics | 2010

Flt-1 haploinsufficiency ameliorates muscular dystrophy phenotype by developmentally increased vasculature in mdx mice.

Mayank Verma; Yoko Asakura; Hiroyuki Hirai; Shuichi Watanabe; Christopher Tastad; Guo-Hua Fong; Masatsugu Ema; Jarrod A. Call; Dawn A. Lowe; Atsushi Asakura

Duchenne muscular dystrophy (DMD) is an X-linked recessive genetic disease caused by mutations in the gene coding for the protein dystrophin. Recent work demonstrates that dystrophin is also found in the vasculature and its absence results in vascular deficiency and abnormal blood flow. This induces a state of ischemia further aggravating the muscular dystrophy pathogenesis. For an effective form of therapy of DMD, both the muscle and the vasculature need to be addressed. To reveal the developmental relationship between muscular dystrophy and vasculature, mdx mice, an animal model for DMD, were crossed with Flt-1 gene knockout mice to create a model with increased vasculature. Flt-1 is a decoy receptor for vascular endothelial growth factor, and therefore both homozygous (Flt-1(-/-)) and heterozygous (Flt-1(+/-)) Flt-1 gene knockout mice display increased endothelial cell proliferation and vascular density during embryogenesis. Here, we show that Flt-1(+/-) and mdx:Flt-1(+/-) adult mice also display a developmentally increased vascular density in skeletal muscle compared with the wild-type and mdx mice, respectively. The mdx:Flt-1(+/-) mice show improved muscle histology compared with the mdx mice with decreased fibrosis, calcification and membrane permeability. Functionally, the mdx:Flt-1(+/-) mice have an increase in muscle blood flow and force production, compared with the mdx mice. Consequently, the mdx:utrophin(-/-):Flt-1(+/-) mice display improved muscle histology and significantly higher survival rates compared with the mdx:utrophin(-/-) mice, which show more severe muscle phenotypes than the mdx mice. These data suggest that increasing the vasculature in DMD may ameliorate the histological and functional phenotypes associated with this disease.


Journal of Applied Physiology | 2011

Adaptive strength gains in dystrophic muscle exposed to repeated bouts of eccentric contraction

Jarrod A. Call; Michael D. Eckhoff; Kristen A. Baltgalvis; Gordon L. Warren; Dawn A. Lowe

The objective of this study was to determine the functional recovery and adaptation of dystrophic muscle to multiple bouts of contraction-induced injury. Because lengthening (i.e., eccentric) contractions are extremely injurious for dystrophic muscle, it was considered that repeated bouts of such contractions would exacerbate the disease phenotype in mdx mice. Anterior crural muscles (tibialis anterior and extensor digitorum longus) and posterior crural muscles (gastrocnemius, soleus, and plantaris) from mdx mice performed one or five repeated bouts of 100 electrically stimulated eccentric contractions in vivo, and each bout was separated by 10-18 days. Functional recovery from one bout was achieved 7 days after injury, which was in contrast to a group of wild-type mice, which still showed a 25% decrement in electrically stimulated isometric torque at that time point. Across bouts there was no difference in the immediate loss of strength after repeated bouts of eccentric contractions for mdx mice (-70%, P = 0.68). However, after recovery from each bout, dystrophic muscle had greater torque-generating capacity such that isometric torque was increased ∼38% for both anterior and posterior crural muscles at bout 5 compared with bout 1 (P < 0.001). Moreover, isolated extensor digitorum longus muscles excised from in vivo-tested hindlimbs 14-18 days after bout 5 had greater specific force than contralateral control muscles (12.2 vs. 10.4 N/cm(2), P = 0.005) and a 20% greater maximal relaxation rate (P = 0.049). Additional adaptations due to the multiple bouts of eccentric contractions included rapid recovery and/or sparing of contractile proteins, enhanced parvalbumin expression, and a decrease in fiber size variability. In conclusion, eccentric contractions are injurious to dystrophic skeletal muscle; however, the muscle recovers function rapidly and adapts to repeated bouts of eccentric contractions by improving strength.


Journal of Cell Science | 2011

Quadriceps myopathy caused by skeletal muscle-specific ablation of βcyto-actin

Kurt W. Prins; Jarrod A. Call; Dawn A. Lowe; James M. Ervasti

Quadriceps myopathy (QM) is a rare form of muscle disease characterized by pathological changes predominately localized to the quadriceps. Although numerous inheritance patterns have been implicated in QM, several QM patients harbor deletions in dystrophin. Two defined deletions predicted loss of functional spectrin-like repeats 17 and 18. Spectrin-like repeat 17 participates in actin-filament binding, and thus we hypothesized that disruption of a dystrophin–cytoplasmic actin interaction might be one of the mechanisms underlying QM. To test this hypothesis, we generated mice deficient for βcyto-actin in skeletal muscles (Actb-msKO). Actb-msKO mice presented with a progressive increase in the proportion of centrally nucleated fibers in the quadriceps, an approximately 50% decrease in dystrophin protein expression without alteration in transcript levels, deficits in repeated maximal treadmill tests, and heightened sensitivity to eccentric contractions. Collectively, these results suggest that perturbing a dystrophin–βcyto-actin linkage decreases dystrophin stability, which results in a QM, and implicates βcyto-actin as a possible candidate gene in QM pathology.


Medicine and Science in Sports and Exercise | 2013

Adaptations of mouse skeletal muscle to low-intensity vibration training.

James N. Mckeehen; Susan A. Novotny; Kristen A. Baltgalvis; Jarrod A. Call; David J. Nuckley; Dawn A. Lowe

PURPOSE We tested the hypothesis that low-intensity vibration training in mice improves contractile function of hindlimb skeletal muscles and promotes exercise-related cellular adaptations. METHODS We subjected C57BL/6J mice to 6 wk, 5 d·wk, 15 min·d of sham or low-intensity vibration (45 Hz, 1.0g) while housed in traditional cages (Sham-Active, n = 8; Vibrated-Active, n = 10) or in small cages to restrict physical activity (Sham-Restricted, n = 8; Vibrated-Restricted, n = 8). Contractile function and resistance to fatigue were tested in vivo (anterior and posterior crural muscles) and ex vivo on the soleus muscle. Tibialis anterior and soleus muscles were evaluated histologically for alterations in oxidative metabolism, capillarity, and fiber types. Epididymal fat pad and hindlimb muscle masses were measured. Two-way ANOVAs were used to determine the effects of vibration and physical inactivity. RESULTS Vibration training resulted in a 10% increase in maximal isometric torque (P = 0.038) and 16% faster maximal rate of relaxation (P = 0.030) of the anterior crural muscles. Posterior crural muscles were unaffected by vibration, except greater rates of contraction in Vibrated-Restricted mice compared with Vibrated-Active and Sham-Restricted mice (P = 0.022). Soleus muscle maximal isometric tetanic force tended to be greater (P = 0.057), and maximal relaxation was 20% faster (P = 0.005) in vibrated compared with sham mice. The restriction of physical activity induced muscle weakness but was not required for vibration to be effective in improving strength or relaxation. Vibration training did not affect muscle fatigability or any indicator of cellular adaptation investigated (P ≥ 0.431). Fat pad but not hindlimb muscle masses were affected by vibration training. CONCLUSION Vibration training in mice improved muscle contractility, specifically strength and relaxation rates, with no indication of adverse effects to muscle function or cellular adaptations.

Collaboration


Dive into the Jarrod A. Call's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge