Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jarrod Blinch is active.

Publication


Featured researches published by Jarrod Blinch.


Experimental Brain Research | 2014

Comparing movement preparation of unimanual, bimanual symmetric, and bimanual asymmetric movements.

Jarrod Blinch; Brendan D. Cameron; Erin K. Cressman; Ian M. Franks; Mark G. Carpenter; Romeo Chua

Abstract The goal of this study was to determine the process or processes most likely to be involved in reaction-time costs for spatially cued bimanual reaching. We used reaction time to measure the cost of bimanual symmetric movements compared to unimanual movements (a bimanual symmetric cost) and the cost for bimanual asymmetric movements compared to symmetric movements (a bimanual asymmetric cost). The results showed that reaction times were comparable for all types of movements in simple reaction time; that is, there was neither a bimanual symmetric cost nor an asymmetric cost. Therefore, unimanual, bimanual symmetric, and bimanual asymmetric movements have comparable complexity during response initiation. In choice conditions, there was no bimanual symmetric cost but there was a bimanual asymmetric cost, indicating that the preparation of asymmetric movements is more complex than symmetric movements. This asymmetric cost is likely the result of interference during response programming.


Experimental Brain Research | 2012

Do preparation or control processes result in the modulation to Fitts' law for movements to targets with placeholders?

Jarrod Blinch; Brendan D. Cameron; Nicola J. Hodges; Romeo Chua

It is remarkable that the movement time of a goal-directed movement, the result of complex coordination in the nervous system, can be predicted by a simple mathematical equation. That equation is Fitts’ law, and it is one of only a few laws that capture human motor performance. It has recently been shown that reaches to targets with placeholders modulate Fitts’ law (e.g. Adam et al. in Psychol Sci 17(9):794–798, 2006). The purpose of this study was to further test whether the modulation to Fitts’ law is a result of processes related to movement preparation or movement execution. Preparation and control processes were isolated with trajectory analysis; specifically, the durations of the primary submovement and the secondary submovement were selected to reflect the preparation and control processes, respectively. The time available for movement preparation was also manipulated by precuing the target in some blocks. We found that the modulation to Fitts’ law in total movement time with target placeholders occurred during the secondary submovement, suggesting that control processes were the locus of the modulation. However, extending the duration of preparation with a precue eliminated the modulation in total movement time, which suggests that preparation processes were the locus of the modulation. Based on these results, it is premature to isolate unequivocally the modulation to either preparation or control processes. The modulation to Fitts’ law during the secondary submovement presents the possibility that facilitated online control may contribute to the modulation.


Experimental Brain Research | 2011

Bimanual reaches with symbolic cues exhibit errors in target selection

Jarrod Blinch; Brendan D. Cameron; Ian M. Franks; Romeo Chua

We examined the movement trajectories of symmetric and asymmetric bimanual reaches to targets specified by direct spatial cues and by indirect symbolic cues. Symbolically cued asymmetric reaches have been shown to exhibit longer reaction times compared with symmetric reaches, whereas no such reaction time cost is observed when targets are spatially cued—a pattern thought to implicate increased demands on response selection (Diedrichsen et al. in Psychol Sci 12(6):493–498, 2001). As symbolically cued reaches impose greater demands on cognitive visuomotor translation than spatially cued reaches (Diedrichsen et al. in Cereb Cortex 16(12):1729–1738, 2006), we asked whether bimanual movements exhibit more spatial coupling with symbolic cues than with spatial cues. Participants made bimanual symmetric and asymmetric reaches to short- and long-distance targets cued either symbolically or spatially. We replicated the reaction time cost for symbolically cued asymmetric movements. A subset of these asymmetric reaches also showed large trajectory modulations. It appeared that this subset had been incorrectly prepared and the movements required of the left and right arms had been switched. No such errors in target selection were observed when targets were spatially cued. In contrast to the reaction time cost and errors in selection for symbolically cued movements, we observed little evidence of increased spatial coupling with symbolic cues when movements were initiated towards the correct targets. We conclude that cognitive visuomotor translation demands during response selection increases bimanual coupling at the level of response selection (reaction time cost, errors in target selection) but not at the level of movement execution (spatial coupling).


Journal of Motor Behavior | 2018

Response Selection Contributes to the Preparation Cost for Bimanual Asymmetric Movements

Jarrod Blinch; Ian M. Franks; Mark G. Carpenter; Romeo Chua

ABSTRACT Movement preparation of bimanual asymmetric movements takes more time than bimanual symmetric movements in choice reaction-time conditions. This bimanual asymmetric cost may be caused by increased processing demands on any stage of movement preparation. The authors tested the contributions of each stage of movement preparation to the asymmetric cost by using the additive factors method. This involved altering the stimulus contrast, response compatibility, and response complexity. These manipulations changed the processing demands on stimulus identification, response selection, and response programming, respectively. Any manipulation with a larger reaction time cost than control suggests that stage contributes to the bimanual asymmetric cost. The bimanual asymmetric cost was larger for incompatible stimuli, which supports that response selection contributes to the bimanual asymmetric cost.


Experimental Brain Research | 2017

Effects of integrated feedback on discrete bimanual movements in choice reaction time

Jarrod Blinch; Guilherme de Cellio Martins; Romeo Chua

The ability to coordinate the simultaneous movements of our arms is limited by a coalition of constraints. Some of these constraints can be overcome when the task conceptualisation is improved. The present study investigated how the movement preparation of bimanual reaching movements was affected by integrated visual feedback of the responses. Previous research has shown that the preparation of bimanual asymmetric movements takes longer than bimanual symmetric movements. The goal of the present study was to determine whether integrated, Lissajous feedback could eliminate this bimanual asymmetric cost. Fifteen participants made unimanual and bimanual symmetric and asymmetric reaches with separate feedback, where there was a cursor and a target for each hand. Participants also made bimanual symmetric and asymmetric movements with integrated feedback; a single cursor and a single target represented the locations and goals of both arms in this condition. The results showed a bimanual asymmetric cost with separate feedback, and that this cost persisted with integrated feedback. We suggest that integrated feedback improved continuous and discrete bimanual movements in other experiments by facilitating error detection and correction processes. We hypothesise that the bimanual asymmetric cost persisted in the present experiment because the uncertainty associated with choice reaction time prevented the facilitated error processing from improving the preparation of the next trial.


Experimental Brain Research | 2016

The violation of Fitts' Law: an examination of displacement biases and corrective submovements.

James W. Roberts; Jarrod Blinch; Digby Elliott; Romeo Chua; James Lyons; Timothy N. Welsh

Fitts’ Law holds that, to maintain accuracy, movement times of aiming movements must change as a result of varying degrees of movement difficulty. Recent evidence has emerged that aiming to a target located last in an array of placeholders results in a shorter movement time than would be expected by the Fitts’ equation—a violation of Fitts’ Law. It has been suggested that the violation emerges because the performer adopts an optimized movement strategy in which they partially pre-plan an action to the closest placeholder (undershoot the last placeholder) and rely on a secondary acceleration to propel the limb toward the last location when it is selected as the target (Glazebrook et al. in Hum Mov Sci 39:163–176, 2015). In the current study, we examine this proposal and further elucidate the processes underlying the violation by examining limb displacement and corrective submovements that occur when performers aim to different target locations. For our Main Study, participants executed discrete aiming movements in a five-placeholder array. We also reanalyzed data from a previously reported study in which participants aimed in placeholder and no-placeholder conditions (Blinch et al. in Exp Brain Res 223:505–515, 2012). The results showed the violation of Fitts’ Law unfolded following peak velocity (online control). Further, the analysis showed that movements to the last target tended to overshoot and had a higher proportion of secondary submovements featuring a reversal than other categories of submovement (secondary accelerations, discontinuities). These findings indicate that the violation of Fitts’ Law may, in fact, result from a strategic bias toward planning farther initial displacements of the limb which accommodates a shorter time in online control.


Human Movement Science | 2018

Effects of integrated feedback and movement templates on discrete bimanual movements in simple reaction time

Jarrod Blinch; Taylor Jensen Kouts

The purpose of the current study was to investigate whether integrated visual feedback and movement templates could facilitate bimanual movements with different patterns of spatiotemporal coupling and decoupling. Knowing when Lissajous feedback and movement templates improve bimanual movements, and when they do not, will help determine the mechanisms of task conceptualisation. We tested two bimanual asymmetric conditions where different movement templates were used to encourage the movements to travel different paths to the same targets. The asymmetric straight condition was the same as Shea, Boyle, and Kovacs (2012), and we predicted that we would replicate their results and find no temporal coupling. The novel asymmetric diagonal condition required movements with a 2:1 movement ratio (relative spatiotemporal coupling). Longer movement time and larger root-mean-square deviation of the trajectories suggested that asymmetric straight movements were more difficult than symmetric movements. Even longer movement times and fewer target hits suggested that asymmetric diagonal movements were more difficult than asymmetric straight movements. Lissajous feedback and movement templates made the difficult asymmetric movements possible. However, movements with relative spatiotemporal coupling were the most difficult and movements without temporal coupling were still more difficult than symmetric movements. We suggest that Lissajous feedback and movement templates improved the task conceptualisation, which eliminated or reduced the high-level cognitive constraints. The low-level neuromuscular constraints, however, persisted and these caused the increased difficulty for asymmetric movements. Improving the task conceptualisation can facilitate asymmetric movements. These asymmetric movements still have different difficulties and they are not as easy as symmetric movements.


Experimental Brain Research | 2018

Complexity of movement preparation and the spatiotemporal coupling of bimanual reach-to-grasp movements

Jarrod Blinch; Jon B. Doan; Claudia L. R. Gonzalez

There is a movement preparation cost for bimanual asymmetric reaching movements compared to bimanual symmetric movements. This is likely caused by the complex spatiotemporal coupling of bimanual asymmetric movements. The spatiotemporal coupling of bimanual reach-to-grasp movements has been investigated, but not the potential movement preparation costs. The purpose of the present study was to investigate the relationship between movement preparation costs and spatiotemporal coupling of reach-to-grasp movements. Twenty-four participants made unimanual, bimanual symmetric, and bimanual asymmetric reach-to-grasp movements in four-choice reaction time tasks. There was a movement preparation cost for bimanual symmetric reach-to-grasp movements compared to unimanual movements, which was not previously seen for reaching movements. Coordinating two symmetric grasps probably caused this bimanual symmetric cost, as we have previously shown that there is no bimanual symmetric cost for reaching movements. It was also surprising that the complexity of movement preparation was comparable for bimanual symmetric and asymmetric reach-to-grasp movements. However, the spatial coupling of bimanual asymmetric movements at movement initiation suggested that they were prepared as bimanual symmetric movements. Online control was then used to modify these symmetric reach-to-grasp movements into asymmetric movements. Preparing bimanual symmetric reach-to-grasp movements in advance instead of asymmetric movements likely prevented a bimanual asymmetric cost.


Experimental Brain Research | 2018

Bimanual joint action: correlated timing or “bimanual” movements accomplished by two people

Melanie Y. Lam; Jarrod Blinch; Elizabeth M. Connors; Jon B. Doan; Claudia L. R. Gonzalez

A crew of two rowing together in perfect synchrony is an example of a task that requires each performer to maintain meticulous timing when coordinating their movements with the other. At the individual level, temporal coordination of the limbs has been observed in bimanual pointing movements even when made to targets of different distance. Timing of the arms is not independent; rather there is a natural temporal coupling. The aim of this experiment was to investigate whether the temporal characteristics of pointing movements can be observed under joint conditions. Sixteen pairs of participants made short and long, unimanual and bimanual pointing movements. In the unimanual and bimanual solo conditions, participants made the movements alone. In the joint condition, each participant contributed one arm to the joint “bimanual” movements. Absolute temporal coupling at movement initiation and termination was measured by the differences in reaction time and total response time. Relative temporal coupling at movement initiation and termination was measured by correlating reaction time and total response time of the left and right limbs. Pointing movements had synchronous movement termination in the bimanual solo conditions and asynchronous termination in the unimanual solo and bimanual joint conditions. The initiation and termination of the arms were not correlated in the unimanual solo condition (initiation r = 0.01, termination r = 0.03). Small-to-medium correlations (r = 0.19, r = 0.24) were observed in the bimanual joint condition, and they were larger than the unimanual solo condition (p = 0.022, p = 0.063). As expected, there were large correlations in the bimanual solo conditions (r = 0.91, r = 0.81). Our findings suggest that absolute temporal coupling does not occur between individuals, but there is evidence for relative temporal coupling in the bimanual joint condition.


Behavior Research Methods | 2018

Trajectory analysis of discrete goal-directed pointing movements: How many trials are needed for reliable data?

Jarrod Blinch; Youngdeok Kim; Romeo Chua

A powerful tool in motor behavior research is trajectory analysis of discrete goal-directed pointing movements. The purpose of the present analysis was to estimate the minimum number of trials per participant required to achieve the conventional level of reliability for trajectory analysis. We analyzed basic measurements of movement and three common methods of trajectory analysis within the framework of generalizability theory. Generalizability studies were used to decompose the total variance of these variables into the percent contributions from person, trial, and the person-by-trial interaction. Decision studies were then used to determine the minimum number of trials required to achieve the conventional level of reliability. The number of trials per participant needed for reliable data of discrete goal-directed pointing movements depended on the dependent variable—for example, reaction times required six or ten trials, movement times required three trials, and constant error required 47 trials. For trajectory analysis, ten or fewer trials were required for reliable dependent variables during the first half of the movement (up to peak velocity or 70% of the displacement). The number of trials required for the second half of the movement rapidly increased to 47 trials at movement termination. This increase in the number of trials required for reliable analysis of the second half of the movement was indicative of online control. Finally, correlation analysis was performed with simulated correlations on subsets of trials, and all 32 trials were required. However, 18 trials might be used without a practically significant change in the correlations.

Collaboration


Dive into the Jarrod Blinch's collaboration.

Top Co-Authors

Avatar

Romeo Chua

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian M. Franks

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Mark G. Carpenter

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Jon B. Doan

University of Lethbridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alyson Plecash

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jada Holmes

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge