Jarrod F. Eubank
University of South Florida
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jarrod F. Eubank.
Journal of the American Chemical Society | 2008
Farid Nouar; Jarrod F. Eubank; Till Bousquet; Lukasz Wojtas; Michael J. Zaworotko; Mohamed Eddaoudi
Here, we report a novel approach for the bottom-up assembly of hierarchical building blocks: simple molecular building blocks (MBBs) and the resultant supermolecular building blocks (SBBs) to build highly coordinated nets. A specific network, the (3,24)-connected rht, was used as a blueprint to construct a metal-organic framework where the MBBs/SBBs augment the net.
Journal of the American Chemical Society | 2008
Mohamed H. Alkordi; Yunling Liu; Randy W. Larsen; Jarrod F. Eubank; Mohamed Eddaoudi
The extra-large cavities of zeolite-like metal-organic frameworks (ZMOFs) offer great potential for their exploration in applications pertinent to larger molecules, like porphyrins. The anionic nature of the framework allowed for facile in situ encapsulation of a cationic free-base porphyrin, and the alpha-cage of our (In-imidazoledicarboxylate)-based rho-ZMOF is ideally suited to the isolation of one porphyrin molecule per cage, which prevents the oxidative self-degradation associated with self-dimerization common in homogeneous catalysis and upon aggregation in solid supports like mesoporous silicates or polymers. The encapsulation of a free-base porphyrin [5,10,15,20-tetrakis(1-methyl-4- pyridinio)porphyrin] and the stability of the rho-ZMOF to metalation conditions, allows for the preparation of a variety of metalloporphyrins (i.e., Mn, Cu, Co, Zn ions) with the ZMOF serving as a platform. The Mn-metallated porphyrin encapsulated in rho-ZMOF shows catalytic activity toward the oxidation of cyclohexane, with turn-over numbers, to the best of our knowledge, higher than reported for similar heterogeneous systems, and our system can be recycled up to 11 cycles, which represents a longer lifetime than reported for any other system.
Journal of the American Chemical Society | 2009
Farid Nouar; Juergen Eckert; Jarrod F. Eubank; Paul M. Forster; Mohamed Eddaoudi
Zeolite-like metal-organic frameworks (ZMOFs) are anionic, have readily exchangeable extra-framework cations, and can be constructed with a variety of organic linkers. ZMOFs therefore can be regarded as an excellent platform for systematic studies of the effect(s) of various structural factors on H(2) binding/interaction with porous metal-organic materials. We find that the enhanced binding of molecular hydrogen in ion-exchanged ZMOFs with an anionic framework is largely governed by the presence of the electrostatic field in the cavity, which is reflected by isosteric heats of adsorption in these compounds which are greater by as much as 50% relative to those in neutral MOFs. Direct contact of the sorbed hydrogen with the exchangeable cations is shown not to be possible in the explored systems thus far, as they retain their form as aqua complexes.
Journal of the American Chemical Society | 2011
Jarrod F. Eubank; Lukasz Wojtas; Matthew R. Hight; Till Bousquet; Victor Ch. Kravtsov; Mohamed Eddaoudi
A new pillaring strategy, based on a ligand-to-axial approach that combines the two previous common techniques, axial-to-axial and ligand-to-ligand, and permits design, access, and construction of higher dimensional MOFs, is introduced and validated. Trigonal heterofunctional ligands, in this case isophthalic acid cores functionalized at the 5-position with N-donor (e.g., pyridyl- or triazolyl-type) moieties, are designed and utilized to pillar pretargeted two-dimensional layers (supermolecular building layers, SBLs). These SBLs, based on edge transitive Kagomé and square lattices, are cross-linked into predicted three-dimensional MOFs with tunable large cavities, resulting in isoreticular platforms.
Journal of the American Chemical Society | 2009
Dorina F. Sava; Victor Ch. Kravtsov; Juergen Eckert; Jarrod F. Eubank; Farid Nouar; Mohamed Eddaoudi
Herein we detail a novel approach for targeting zeolite-like metal-organic frameworks (ZMOFs) that utilizes metal-organic cubes, which are regarded as double four-membered rings (d4Rs) and are composite building units (BUs) in traditional inorganic zeolites. Accordingly, we outline the successful implementation of this strategy by reporting two ZMOFs with ACO and AST zeolite-like topologies, which were constructed from d4R BUs exclusively held together by hydrogen bonds. Their porosity was evaluated, delineating high hydrogen uptake and exceptional stability for the two hydrogen-bonded materials.
Angewandte Chemie | 2012
Jarrod F. Eubank; Farid Nouar; Ryan Luebke; Amy J. Cairns; Lukasz Wojtas; Mohamed H. Alkordi; Till Bousquet; Matthew R. Hight; Juergen Eckert; Jan Peter Embs; Peter A. Georgiev; Mohamed Eddaoudi
The need for tunable functional solid-state materials is ever increasing because of the growing demand to address persisting challenges in global energy issues, environmental sustainability, and others. [1] It is practical and preferable for such materials to be pre-designed and constructed to contain the desired properties and specific functionalities for a given targeted application. An emerging unique class of solid-state materials, namely metal–organic frameworks (MOFs), has the desired attributes and offers great promise to unveil superior materials for many lasting challenges [2] since desired functionality can be introduced pre- and/or post-synthesis. [3] A remarkable feature of MOFs is the ability to build periodic structures with in-built functional properties using the molecular building block (MBB) approach, which utilizes pre-selected organic and inorganic MBBs, with desired function, that are judiciously chosen to possess the proper geometry, shape, and directionality required to target given underlying nets. [4]
Journal of the American Chemical Society | 2011
Jarrod F. Eubank; Hasnaa Mouttaki; Amy J. Cairns; Youssef Belmabkhout; Lukasz Wojtas; Ryan Luebke; Mohamed H. Alkordi; Mohamed Eddaoudi
A new blueprint network for the design and synthesis of porous, functional 3D metal-organic frameworks (MOFs) has been identified, namely, the tbo net. Accordingly, tbo-MOFs based on this unique (3,4)-connected net can be exclusively constructed utilizing a combination of well-known and readily targeted [M(R-BDC)](n) MOF layers [i.e., supermolecular building layers (SBLs)] based on the edge-transitive 4,4 square lattice (sql) (i.e., 2D four-building units) and a novel pillaring strategy based on four proximal isophthalate ligands from neighboring SBL membered rings (i.e., two pairs from each layer) covalently cross-linked through an organic quadrangular core (e.g., tetrasubstituted benzene). Our strategy permits the rational design and synthesis of isoreticular structures, functionalized and/or expanded, that possess extra-large nanocapsule-like cages, high porosity, and potential for gas separation and storage, among others. Thus, tbo-MOF serves as an archetypal tunable, isoreticular MOF platform for targeting desired applications.
Journal of Materials Chemistry | 2011
Ramakanth Ananthoji; Jarrod F. Eubank; Farid Nouar; Hasnaa Mouttaki; Mohamed Eddaoudi; Julie P. Harmon
The design and synthesis of new finely tunable porous materials has spurred interest in developing novel uses in a variety of systems. Zeolites, inorganic materials with high thermal and mechanical stability, in particular, have been widely examined for use in applications such as catalysis, ion exchange and separation. A relatively new class of inorganic–organic hybrid materials known as metal–organic frameworks (MOFs) have recently surfaced, and many have exhibited their efficiency in potential applications such as ion exchange and drug delivery. A more recent development is the design and synthesis of a subclass of MOFs based on zeolite topologies (i.e. ZMOFs), which often exhibit traits of both zeolites and MOFs. Bio-compatible hydrogels already play an important role in drug delivery systems, but are often limited by stability issues. Thus, the addition of ZMOFs to hydrogel formulations is expected to enhance the hydrogel mechanical properties, and the ZMOF–hydrogel composites should present improved, symbiotic drug storage and release for delivery applications. Herein we present the novel composites of a hydrogel with a zeolite-like metal–organic framework, rho-ZMOF, using 2-hydroxyethyl methacrylate (HEMA), 2,3-dihydroxypropyl methacrylate (DHPMA), N-vinyl-2-pyrolidinone (VP) and ethylene glycol dimethacrylate (EGDMA), and the corresponding drug release. An ultraviolet (UV) polymerization method is employed to synthesize the hydrogels, VP 0, VP 15, VP 30, VP 45 and the ZMOF-VP 30 composite, by varying the VP content (mol%). The rho-ZMOF, VP 30, and ZMOF-VP 30 composite are all tested for the controlled release of procainamide (protonated, PH), an anti-arrhythmic drug, in phosphate buffer solution (PBS) using UV spectroscopy.
RSC Advances | 2014
Youssef Belmabkhout; Hasnaa Mouttaki; Jarrod F. Eubank; Vincent Guillerm; Mohamed Eddaoudi
Equilibrium adsorption of methane (CH4), C2+ gases (ethane (C2H6), ethylene (C2H4), propane (C3H8), and propylene (C3H6)), and carbon dioxide (CO2) was measured on a series of tbo-MOFs (topological analogues of the prototypical MOF, HKUST-1, correspondingly dubbed tbo-MOF-1), which were developed via the supermolecular building layer (SBL) pillaring strategy. Specifically, tbo-MOF-2 and its isoreticular, functionalized analogue, tbo-MOF-2-{CH2O[Ph(CO2H)2]}2 (or tbo-MOF-3), which is characterized by pendant isophthalic acid moieties freely pointing into the cavities, were evaluated on the basis of potential use in methane storage and C2+/CH4 separation. The parent, tbo-MOF-2, showed high gravimetric and volumetric CH4 uptake, close to the U.S. Department of Energy (DOE) target for methane storage at 35 bar and room temperature. Though the presence of the pendant isophthalic acid moiety in the analogous compound, tbo-MOF-3, led to a decrease in total CH4 uptake, due mainly to the reduced size of the cavities, interestingly, it increased the affinity of the SBL-based tbo-MOF platform for propane, propene, ethane, and ethylene at low pressures compared with CH4, due additionally to the enhanced interactions of the highly polarizable light hydrocarbons with the isophthalic acid moiety. Using Ideal Adsorption Solution Theory (IAST), the predicted mixture adsorption equilibria for the C3H8/CH4, C3H6/CH4, C2H6/CH4, C2H4/CH4, and C3H8/CO2 systems showed high adsorption selectivity for C2+ over methane for tbo-MOF-3 compared with tbo-MOF-2. The high working storage capacity of tbo-MOF-2 and the high affinity of tbo-MOF-3 for C2+ over CH4 and CO2 make tbo-MOF an ideal platform for studies in gas storage and separation.
Angewandte Chemie | 2007
Yunling Liu; Jarrod F. Eubank; Amy J. Cairns; Juergen Eckert; Victor Ch-H. Kravtsov; Ryan Luebke; Mohamed Eddaoudi