Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jarvis D. Haupt is active.

Publication


Featured researches published by Jarvis D. Haupt.


Proceedings of the IEEE | 2010

Compressed Channel Sensing: A New Approach to Estimating Sparse Multipath Channels

Waheed U. Bajwa; Jarvis D. Haupt; Akbar M. Sayeed; Robert D. Nowak

High-rate data communication over a multipath wireless channel often requires that the channel response be known at the receiver. Training-based methods, which probe the channel in time, frequency, and space with known signals and reconstruct the channel response from the output signals, are most commonly used to accomplish this task. Traditional training-based channel estimation methods, typically comprising linear reconstruction techniques, are known to be optimal for rich multipath channels. However, physical arguments and growing experimental evidence suggest that many wireless channels encountered in practice tend to exhibit a sparse multipath structure that gets pronounced as the signal space dimension gets large (e.g., due to large bandwidth or large number of antennas). In this paper, we formalize the notion of multipath sparsity and present a new approach to estimating sparse (or effectively sparse) multipath channels that is based on some of the recent advances in the theory of compressed sensing. In particular, it is shown in the paper that the proposed approach, which is termed as compressed channel sensing (CCS), can potentially achieve a target reconstruction error using far less energy and, in many instances, latency and bandwidth than that dictated by the traditional least-squares-based training methods.


IEEE Signal Processing Magazine | 2008

Compressed Sensing for Networked Data

Jarvis D. Haupt; Waheed U. Bajwa; Michael G. Rabbat; Robert D. Nowak

This article describes a very different approach to the decentralized compression of networked data. Considering a particularly salient aspect of this struggle that revolves around large-scale distributed sources of data and their storage, transmission, and retrieval. The task of transmitting information from one point to another is a common and well-understood exercise. But the problem of efficiently transmitting or sharing information from and among a vast number of distributed nodes remains a great challenge, primarily because we do not yet have well developed theories and tools for distributed signal processing, communications, and information theory in large-scale networked systems.


IEEE Transactions on Information Theory | 2010

Toeplitz Compressed Sensing Matrices With Applications to Sparse Channel Estimation

Jarvis D. Haupt; Waheed U. Bajwa; Gil M. Raz; Robert D. Nowak

Compressed sensing (CS) has recently emerged as a powerful signal acquisition paradigm. In essence, CS enables the recovery of high-dimensional sparse signals from relatively few linear observations in the form of projections onto a collection of test vectors. Existing results show that if the entries of the test vectors are independent realizations of certain zero-mean random variables, then with high probability the unknown signals can be recovered by solving a tractable convex optimization. This work extends CS theory to settings where the entries of the test vectors exhibit structured statistical dependencies. It follows that CS can be effectively utilized in linear, time-invariant system identification problems provided the impulse response of the system is (approximately or exactly) sparse. An immediate application is in wireless multipath channel estimation. It is shown here that time-domain probing of a multipath channel with a random binary sequence, along with utilization of CS reconstruction techniques, can provide significant improvements in estimation accuracy compared to traditional least-squares based linear channel estimation strategies. Abstract extensions of the main results are also discussed, where the theory of equitable graph coloring is employed to establish the utility of CS in settings where the test vectors exhibit more general statistical dependencies.


information processing in sensor networks | 2006

Compressive wireless sensing

Waheed U. Bajwa; Jarvis D. Haupt; Akbar M. Sayeed; Robert D. Nowak

Compressive sampling is an emerging theory that is based on the fact that a relatively small number of random projections of a signal can contain most of its salient information. In this paper, we introduce the concept of compressive wireless sensing for sensor networks in which a fusion center retrieves signal field information from an ensemble of spatially distributed sensor nodes. Energy and bandwidth are scarce resources in sensor networks and the relevant metrics of interest in our context are 1) the latency involved in information retrieval; and 2) the associated power-distortion trade-off. It is generally recognized that given sufficient prior knowledge about the sensed data (e.g., statistical characterization, homogeneity etc.), there exist schemes that have very favorable power-distortion-latency trade-offs. We propose a distributed matched source-channel communication scheme, based in part on recent results in compressive sampling theory, for estimation of sensed data at the fusion center and analyze, as a function of number of sensor nodes, the trade-offs between power, distortion and latency. Compressive wireless sensing is a universal scheme in the sense that it requires no prior knowledge about the sensed data. This universality, however, comes at the cost of optimality (in terms of a less favorable power-distortion-latency trade-off) and we quantify this cost relative to the case when sufficient prior information about the sensed data is assumed


2007 IEEE/SP 14th Workshop on Statistical Signal Processing | 2007

Toeplitz-Structured Compressed Sensing Matrices

Waheed U. Bajwa; Jarvis D. Haupt; Gil M. Raz; Stephen J. Wright; Robert D. Nowak

The problem of recovering a sparse signal x Rn from a relatively small number of its observations of the form y = Ax Rk, where A is a known matrix and k « n, has recently received a lot of attention under the rubric of compressed sensing (CS) and has applications in many areas of signal processing such as data cmpression, image processing, dimensionality reduction, etc. Recent work has established that if A is a random matrix with entries drawn independently from certain probability distributions then exact recovery of x from these observations can be guaranteed with high probability. In this paper, we show that Toeplitz-structured matrices with entries drawn independently from the same distributions are also sufficient to recover x from y with high probability, and we compare the performance of such matrices with that of fully independent and identically distributed ones. The use of Toeplitz matrices in CS applications has several potential advantages: (i) they require the generation of only O(n) independent random variables; (ii) multiplication with Toeplitz matrices can be efficiently implemented using fast Fourier transform, resulting in faster acquisition and reconstruction algorithms; and (iii) Toeplitz-structured matrices arise naturally in certain application areas such as system identification.


conference on information sciences and systems | 2008

Compressed channel sensing

Waheed U. Bajwa; Jarvis D. Haupt; Gil M. Raz; Robert D. Nowak

Reliable wireless communications often requires accurate knowledge of the underlying multipath channel. This typically involves probing of the channel with a known training waveform and linear processing of the input probe and channel output to estimate the impulse response. Many real-world channels of practical interest tend to exhibit impulse responses characterized by a relatively small number of nonzero channel coefficients. Conventional linear channel estimation strategies, such as the least squares, are ill-suited to fully exploiting the inherent low-dimensionality of these sparse channels. In contrast, this paper proposes sparse channel estimation methods based on convex/linear programming. Quantitative error bounds for the proposed schemes are derived by adapting recent advances from the theory of compressed sensing. The bounds come within a logarithmic factor of the performance of an ideal channel estimator and reveal significant advantages of the proposed methods over the conventional channel estimation schemes.


information processing in sensor networks | 2006

Decentralized compression and predistribution via randomized gossiping

Michael G. Rabbat; Jarvis D. Haupt; Aarti Singh; Robert D. Nowak

Developing energy efficient strategies for the extraction, transmission, and dissemination of information is a core theme in wireless sensor network research. In this paper we present a novel system for decentralized data compression and predistribution. The system simultaneously computes random projections of the sensor data and disseminates them throughout the network using a simple gossiping algorithm. These summary statistics are stored in an efficient manner and can be extracted from a small subset of nodes anywhere in the network. From these measurements one can reconstruct an accurate approximation of the data at all nodes in the network, provided the original data is compressible in a certain sense which need not be known to the nodes ahead of time. The system provides a practical and universal approach to decentralized compression and content distribution in wireless sensor networks. Two example applications, network health monitoring and field estimation, demonstrate the utility of our method


IEEE Transactions on Information Theory | 2007

Joint Source–Channel Communication for Distributed Estimation in Sensor Networks

Waheed U. Bajwa; Jarvis D. Haupt; Akbar M. Sayeed; Robert D. Nowak

Power and bandwidth are scarce resources in dense wireless sensor networks and it is widely recognized that joint optimization of the operations of sensing, processing and communication can result in significant savings in the use of network resources. In this paper, a distributed joint source-channel communication architecture is proposed for energy-efficient estimation of sensor field data at a distant destination and the corresponding relationships between power, distortion, and latency are analyzed as a function of number of sensor nodes. The approach is applicable to a broad class of sensed signal fields and is based on distributed computation of appropriately chosen projections of sensor data at the destination - phase-coherent transmissions from the sensor nodes enable exploitation of the distributed beamforming gain for energy efficiency. Random projections are used when little or no prior knowledge is available about the signal field. Distinct features of the proposed scheme include: (1) processing and communication are combined into one distributed projection operation; (2) it virtually eliminates the need for in-network processing and communication; (3) given sufficient prior knowledge about the sensed data, consistent estimation is possible with increasing sensor density even with vanishing total network power; and (4) consistent signal estimation is possible with power and latency requirements growing at most sublinearly with the number of sensor nodes even when little or no prior knowledge about the sensed data is assumed at the sensor nodes.


IEEE Transactions on Information Theory | 2011

Distilled Sensing: Adaptive Sampling for Sparse Detection and Estimation

Jarvis D. Haupt; Rui M. Castro; Robert D. Nowak

Adaptive sampling results in significant improvements in the recovery of sparse signals in white Gaussian noise. A sequential adaptive sampling-and-refinement procedure called Distilled Sensing (DS) is proposed and analyzed. DS is a form of multistage experimental design and testing. Because of the adaptive nature of the data collection, DS can detect and localize far weaker signals than possible from non-adaptive measurements. In particular, reliable detection and localization (support estimation) using non-adaptive samples is possible only if the signal amplitudes grow logarithmically with the problem dimension. Here it is shown that using adaptive sampling, reliable detection is possible provided the amplitude exceeds a constant, and localization is possible when the amplitude exceeds any arbitrarily slowly growing function of the dimension.


international conference on acoustics, speech, and signal processing | 2007

Compressive Sampling for Signal Detection

Jarvis D. Haupt; Robert D. Nowak

Compressive sampling (CS) refers to a generalized sampling paradigm in which observations are inner products between an unknown signal vector and user-specified test vectors. Among the attractive features of CS is the ability to reconstruct any sparse (or nearly sparse) signal from a relatively small number of samples, even when the observations are corrupted by additive noise. However, the potential of CS in other signal processing applications is still not fully known. This paper examines the performance of CS for the problem of signal detection. A generalized restricted isometry property (GRIP) is introduced, which guarantees that angles are preserved, in addition to the usual norm preservation, by CS. The GRIP is leveraged to derive error bounds for a CS matched filtering scheme, and to show that the scheme is robust to signal mismatch.

Collaboration


Dive into the Jarvis D. Haupt's collaboration.

Top Co-Authors

Avatar

Robert D. Nowak

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Xingguo Li

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Rui M. Castro

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akshay Soni

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Tuo Zhao

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Han Liu

Princeton University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge