Jasmin Lalonde
Tufts University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jasmin Lalonde.
Molecular Psychiatry | 2015
Sabine Bavamian; Nikolaos Mellios; Jasmin Lalonde; Daniel M. Fass; Jennifer X. Wang; Steven D. Sheridan; Jon M. Madison; Fen Zhou; Erroll H. Rueckert; Doug Barker; Roy H. Perlis; Mriganka Sur; Stephen J. Haggarty
Bipolar disorder (BD) is a heritable neuropsychiatric disorder with largely unknown pathogenesis. Given their prominent role in brain function and disease, we hypothesized that microRNAs (miRNAs) might be of importance for BD. Here we show that levels of miR-34a, which is predicted to target multiple genes implicated as genetic risk factors for BD, are increased in postmortem cerebellar tissue from BD patients, as well as in BD patient-derived neuronal cultures generated by reprogramming of human fibroblasts into induced neurons or into induced pluripotent stem cells (iPSCs) subsequently differentiated into neurons. Of the predicted miR-34a targets, we validated the BD risk genes ankyrin-3 (ANK3) and voltage-dependent L-type calcium channel subunit beta-3 (CACNB3) as direct miR-34a targets. Using human iPSC-derived neuronal progenitor cells, we further show that enhancement of miR-34a expression impairs neuronal differentiation, expression of synaptic proteins and neuronal morphology, whereas reducing endogenous miR-34a expression enhances dendritic elaboration. Taken together, we propose that miR-34a serves as a critical link between multiple etiological factors for BD and its pathogenesis through the regulation of a molecular network essential for neuronal development and synaptogenesis.
Science Signaling | 2014
Jasmin Lalonde; Gregory Saia; Grace Gill
Resting neurons use a specific calcium influx pathway to actively control transcription factor function. No Rest for Electrically Inactive Neurons The electrical activity of neurons depends on the membrane potential (relative charge of the cytosol compared to the extracellular space). Neurons at their “resting” membrane potential are typically considered inactive. By manipulating the membrane potential using different concentrations of potassium ions in the culture medium, Lalonde et al. discovered that resting cerebellar granule neurons actively degraded the transcription factor Sp4 through a process that required calcium signaling. Under resting conditions, calcium in the endoplasmic reticulum was depleted, triggering store-operated calcium entry, a pathway that mediates refilling of this calcium store. Sp4 degradation required this specific calcium influx pathway. Thus, resting neurons are still actively regulating transcription factor abundance through calcium signaling. Calcium (Ca2+) signaling activated in response to membrane depolarization regulates neuronal maturation, connectivity, and plasticity. Store-operated Ca2+ entry (SOCE) occurs in response to depletion of Ca2+ from endoplasmic reticulum (ER), mediates refilling of this Ca2+ store, and supports Ca2+ signaling in nonexcitable cells. We report that maximal activation of SOCE occurred in cerebellar granule neurons cultured under resting conditions and that this Ca2+ influx promoted the degradation of transcription factor Sp4, a regulator of neuronal morphogenesis and function. Lowering the concentration of extracellular potassium, a condition that reduces neuronal excitability, stimulated depletion of intracellular Ca2+ stores, resulted in the relocalization of the ER Ca2+ sensor STIM1 into punctate clusters consistent with multimerization and accumulation at junctions between the ER and plasma membrane, and induced a Ca2+ influx with characteristics of SOCE. Compounds that block SOCE prevented the ubiquitylation and degradation of Sp4 in neurons exposed to a low concentration of extracellular potassium. Knockdown of STIM1 blocked degradation of Sp4, whereas expression of constitutively active STIM1 decreased Sp4 abundance under depolarizing conditions. Our findings indicated that, in neurons, SOCE is induced by hyperpolarization, and suggested that this Ca2+ influx pathway is a distinct mechanism for regulating neuronal gene expression.
Vision Research | 2002
Jasmin Lalonde; Avi Chaudhuri
Discrimination thresholds were obtained using a delayed spatial frequency discrimination task. In Experiment 1, we found that presentation of a mask 3 s before onset of a reference Gabor patch caused a selective, spatial frequency dependent interference in a subsequent discrimination task. However, a 10 s interval abolished this masking effect. In Experiment 2, the mask was associated with a second spatial frequency discrimination task so that a representation of the mask had to be coded into short-term perceptual memory. This experiment was performed to assess whether absence of masking in the 10 s condition of Experiment 1 might be due to decay of the mask information in the perceptual or the memory representational domain. The presence of this second discrimination task now caused similar interference effects on the primary discrimination task at both the 3 s and 10 s interstimulus intervals (ISI) conditions. Finally, to test the robustness of the masking effect, the nature of the secondary masking task was changed from a spatial frequency discrimination task to an orientation discrimination task in Experiment 3. The masking effect was now abolished in both the 3 and 10 s ISI conditions. Together, the results from these experiments are consistent with the idea of a two-level perceptual memory mechanism. The results also suggest that stimulus representations during a perceptual discrimination task are shared between the perceptual and memory representation domains in a task-dependent manner.
Bipolar Disorders | 2011
Raquel Pinacho; Núria Villalmanzo; Jasmin Lalonde; Josep Maria Haro; J. Javier Meana; Grace Gill; Belén Ramos
Pinacho R, Villalmanzo N, Lalonde J, Haro JM, Meana JJ, Gill G, Ramos B. The transcription factor SP4 is reduced in postmortem cerebellum of bipolar disorder subjects: control by depolarization and lithium. Bipolar Disord 2011: 13: 474–485.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Brian Tobe; Andrew M. Crain; Alicia M. Winquist; Barbara Calabrese; Hiroko Makihara; Wen-Ning Zhao; Jasmin Lalonde; Haruko Nakamura; Glenn T. Konopaske; Michelle M. Sidor; Cameron D. Pernia; Naoya Yamashita; Moyuka Wada; Yuuka Inoue; Fumio Nakamura; Steven D. Sheridan; Ryan W. Logan; Michael Brandel; Dongmei Wu; Joshua G. Hunsberger; Laurel Dorsett; Cordulla Duerr; Ranor C. B. Basa; Michael McCarthy; Namrata D. Udeshi; Philipp Mertins; Steven A. Carr; Guy A. Rouleau; Lina Mastrangelo; Jianxue Li
Significance One-third of bipolar disorder (BPD) patients are lithium-responsive (LiR) for unknown reasons. Were lithium’s target to be identified, then BPD’s pathogenesis might be unraveled. We identified and mapped the “lithium-response pathway,” which governs the phosphorylation of CRMP2, a cytoskeleton regulator, particularly for dendritic spines: hence, a neural network modulator. Although “toggling” between inactive (phosphorylated) and active (nonphosphorylated) CRMP2 is physiologic, the “set-point” in LiR BPD is abnormal. Lithium (and other pathway-modulators) normalize that set-point. Hence, BPD is a disorder not of a gene but of the posttranslational regulation of a developmentally critical molecule. Such knowledge should enable better mechanistically based treatments and bioassays. Instructively, lithium was our “molecular can-opener” for “prying” intracellularly to reveal otherwise inscrutable pathophysiology in this complex polygenic disorder. The molecular pathogenesis of bipolar disorder (BPD) is poorly understood. Using human-induced pluripotent stem cells (hiPSCs) to unravel such mechanisms in polygenic diseases is generally challenging. However, hiPSCs from BPD patients responsive to lithium offered unique opportunities to discern lithiums target and hence gain molecular insight into BPD. By profiling the proteomics of BDP–hiPSC-derived neurons, we found that lithium alters the phosphorylation state of collapsin response mediator protein-2 (CRMP2). Active nonphosphorylated CRMP2, which binds cytoskeleton, is present throughout the neuron; inactive phosphorylated CRMP2, which dissociates from cytoskeleton, exits dendritic spines. CRMP2 elimination yields aberrant dendritogenesis with diminished spine density and lost lithium responsiveness (LiR). The “set-point” for the ratio of pCRMP2:CRMP2 is elevated uniquely in hiPSC-derived neurons from LiR BPD patients, but not with other psychiatric (including lithium-nonresponsive BPD) and neurological disorders. Lithium (and other pathway modulators) lowers pCRMP2, increasing spine area and density. Human BPD brains show similarly elevated ratios and diminished spine densities; lithium therapy normalizes the ratios and spines. Consistent with such “spine-opathies,” human LiR BPD neurons with abnormal ratios evince abnormally steep slopes for calcium flux; lithium normalizes both. Behaviorally, transgenic mice that reproduce lithiums postulated site-of-action in dephosphorylating CRMP2 emulate LiR in BPD. These data suggest that the “lithium response pathway” in BPD governs CRMP2s phosphorylation, which regulates cytoskeletal organization, particularly in spines, modulating neural networks. Aberrations in the posttranslational regulation of this developmentally critical molecule may underlie LiR BPD pathogenesis. Instructively, examining the proteomic profile in hiPSCs of a functional agent—even one whose mechanism-of-action is unknown—might reveal otherwise inscrutable intracellular pathogenic pathways.
The Journal of Neuroscience | 2004
Jasmin Lalonde; Pascal E. D. Lachance; Avi Chaudhuri
Elevation of intracellular Ca2+ levels activates calcium/calmodulin-dependent protein kinase (CaMK) IV, which in turn plays an important role in neuroprotection and neuroplasticity. The possibility that CaMKIV is similarly involved in neocortical tissue has not been examined previously, especially with regard to the plastic nature of ocular dominance features in the primary visual cortex (area V1). We addressed this question by way of monocular enucleation (ME) to disrupt sensory input and examine CaMKIV expression changes in monkey area V1. Immunohistochemical staining of area V1 in normal infants showed a nuclear presence of CaMKIV, which did not changed after ME. However, a striking set of layer- and time-dependent changes in nuclear CaMKIV expression was observed in adult area V1 after ME. A strong increase in nuclear CaMKIV levels was evident in cortical layers II/III and VI after 1 d of ME and in layer IVC after 5 d of ME. These specific laminar changes persisted after 30 d of ME and, most notably, showed a columnar profile in which CaMKIV expression was linked to open-eye columns. Real-time quantitative reverse transcription-PCR and Western blot analysis showed that total amounts of CaMKIV mRNA and protein remained unchanged after ME, suggesting that a nuclear translocation may occur from the cytoplasm. Finally, double-label immunohistochemical staining with a pyramidal cell marker (SMI-32) showed that CaMKIV was absent in this subtype, whereas coincidental expression with GABA, parvalbumin, and calretinin, but not calbindin, showed its clear presence in a subset of interneurons. We propose that CaMKIV activity within diverse groups of cortical interneurons may play an important role in adaptive plastic reorganization of adult neocortical tissue.
Journal of Neurochemistry | 2014
Gregory Saia; Jasmin Lalonde; Xinxin Sun; Belén Ramos; Grace Gill
The regulation of transcription factor function in response to neuronal activity is important for development and function of the nervous system. The transcription factor Sp4 regulates the developmental patterning of dendrites, contributes to complex processes including learning and memory, and has been linked to psychiatric disorders such as schizophrenia and bipolar disorder. Despite its many roles in the nervous system, the molecular mechanisms regulating Sp4 activity are poorly understood. Here, we report a site of phosphorylation on Sp4 at serine 770 that is decreased in response to membrane depolarization. Inhibition of the voltage‐dependent NMDA receptor increased Sp4 phosphorylation. Conversely, stimulation with NMDA reduced the levels of Sp4 phosphorylation, and this was dependent on the protein phosphatase 1/2A. A phosphomimetic substitution at S770 impaired the Sp4‐dependent maturation of cerebellar granule neuron primary dendrites, whereas a non‐phosphorylatable Sp4 mutant behaved like wild type. These data reveal that transcription factor Sp4 is regulated by NMDA receptor‐dependent activation of a protein phosphatase 1/2A signaling pathway. Our findings also suggest that the regulated control of Sp4 activity is an important mechanism governing the developmental patterning of dendrites.
Molecular and Cellular Neuroscience | 2007
Jasmin Lalonde; Avi Chaudhuri
Our understanding of the molecular events that emerge after change in sensory input remains elusive, especially with regard to mature area V1. Here, we characterized P-CREB expression in area V1 of monkeys at multiple time-points after monocular enucleation (ME) to assess the possible contribution of CREB in visually deprived neocortex. Immunoblot assays and immunostainings showed that P-CREB is dynamically regulated in adult area V1, reaching a peak level between 5 and 30 days after ME, and becoming reduced at the 90-day post-ME time-point. This striking temporal increase in P-CREB level was paralleled by a concomitant increase of two CREB-regulated pro-survival effectors, namely Bcl-2 and Bcl-w. We present our results in the context of recent advances about adult visual neocortex and propose that ME induces a multifaceted CREB-mediated response that favors intrinsic stability of neurons and facilitates mature cortical networks to reorganize over a prolonged period.
Neuroreport | 2005
Kumar V.S. Nemmani; Jasmin Lalonde; Jeffrey S. Mogil
In this study, we examined changes in expression of calcium/calmodulin-dependent protein kinase IV (CaMKIV) in the mouse brain following chronic morphine treatment. Double immunohistochemical staining showed strong colocalization of CaMKIV with μ-opioid receptors. Chronic treatment with morphine produced an increase in expression of CaMKIV and phosphorylated cAMP response element-binding protein (pCREB) in the CA3 region of the hippocampus, whereas a decrease in CaMKIV and pCREB expression was observed in the caudate putamen. Interestingly, chronic morphine induced a decrease in protein expression of CaMKIV in the basolateral amygdale and the primary somatosensory cortex without any concomitant changes in pCREB. These findings suggest that CaMKIV-dependent signaling may play a role in chronic morphine-induced neuroplasticity in a brain region-specific manner.
ACS Chemical Biology | 2017
Jonathan Iaconelli; Jasmin Lalonde; Bradley Watmuff; Bangyan Liu; Ralph Mazitschek; Stephen J. Haggarty; Rakesh Karmacharya
The AKT family of serine-threonine kinases functions downstream of phosphatidylinositol 3-kinase (PI3K) to transmit signals by direct phosphorylation of a number of targets, including the mammalian target of rapamycin (mTOR), glycogen synthase kinase 3β (GSK3β), and β-catenin. AKT binds to phosphatidylinositol (3,4,5)-triphosphate (PIP3) generated by PI3K activation, which results in its membrane localization and subsequent activation through phosphorylation by phosphoinositide-dependent protein kinase 1 (PDK1). Together, the PI3K-AKT signaling pathway plays pivotal roles in many cellular systems, including in the central nervous system where it governs both neurodevelopment and neuroplasticity. Recently, lysine residues (Lys14 and Lys20) on AKT, located within its pleckstrin homology (PH) domain that binds to membrane-bound PIP3, have been found to be acetylated under certain cellular contexts in various cancer cell lines. These acetylation modifications are removed by the enzymatic action of the class III lysine deacetylases, SIRT1 and SIRT2, of the sirtuin family. The extent to which reversible acetylation regulates AKT function in other cell types remains poorly understood. We report here that AKT kinase activity is modulated by a class IIb lysine deacetylase, histone deacetylase 6 (HDAC6), in human neural progenitor cells (NPCs). We find that HDAC6 and AKT physically interact with each other in the neuronal cells, and in the presence of selective HDAC6 inhibition, AKT is acetylated at Lys163 and Lys377 located in the kinase domain, two novel sites distinct from the acetylation sites in the PH-domain modulated by the sirtuins. Measurement of the functional effect of HDAC6 inhibition on AKT revealed decreased binding to PIP3, a correlated decrease in AKT kinase activity, decreased phosphorylation of Ser552 on β-catenin, and modulation of neuronal differentiation trajectories. Taken together, our studies implicate the deacetylase activity of HDAC6 as a novel regulator of AKT signaling and point to novel mechanisms for regulating AKT activity with small-molecule inhibitors of HDAC6 currently under clinical development.