Jasna Kovač
University of Ljubljana
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jasna Kovač.
PLOS ONE | 2014
Petra Videnska; Md. Masudur Rahman; Marcela Faldynova; Vladimir Babak; Marta Matulova; Estella Prukner-Radovčić; Ivan Krizek; Sonja Smole-Mozina; Jasna Kovač; Ama Szmolka; Béla Nagy; Karel Sedlar; Darina Čejková; Ivan Rychlik
Poultry meat is the most common protein source of animal origin for humans. However, intensive breeding of animals in confined spaces has led to poultry colonisation by microbiota with a zoonotic potential or encoding antibiotic resistances. In this study we were therefore interested in the prevalence of selected antibiotic resistance genes and microbiota composition in feces of egg laying hens and broilers originating from 4 different Central European countries determined by real-time PCR and 16S rRNA gene pyrosequencing, respectively. strA gene was present in 1 out of 10,000 bacteria. The prevalence of sul1, sul2 and tet(B) in poultry microbiota was approx. 6 times lower than that of the strA gene. tet(A) and cat were the least prevalent being present in around 3 out of 10,000,000 bacteria forming fecal microbiome. The core chicken fecal microbiota was formed by 26 different families. Rather unexpectedly, representatives of Desulfovibrionaceae and Campylobacteraceae, both capable of hydrogen utilisation in complex microbial communities, belonged among core microbiota families. Understanding the roles of individual population members in the total metabolism of the complex community may allow for interventions which might result in the replacement of Campylobacteraceae with Desulfovibrionaceae and a reduction of Campylobacter colonisation in broilers, carcasses, and consequently poultry meat products.
PLOS ONE | 2015
Jasna Kovač; Katarina Šimunović; Zuowei Wu; Anja Klančnik; Qijing Zhang; Sonja Smole Možina
The aim of the study was to investigate the mode of action of (-)-α-pinene in terms of its modulation of antibiotic resistance in Campylobacter jejuni. Broth microdilution and ethidium bromide accumulation assays were used to evaluate the (-)-α-pinene antimicrobial activity, modulation of antimicrobial resistance, and inhibition of antimicrobial efflux. The target antimicrobial efflux systems were identified using an insertion mutagenesis approach, and C. jejuni adaptation to (-)-α-pinene was evaluated using DNA microarrays. Knock-out mutants of the key up-regulated transcriptional regulators hspR and hrcA were constructed to investigate their roles in C. jejuni adaptation to several stress factors, including osmolytes, and pH, using Biolog phenotypical microarrays. Our data demonstrate that (-)-α-pinene efficiently modulates antibiotic resistance in C. jejuni by decreasing the minimum inhibitory concentrations of ciprofloxacin, erythromycin and triclosan by up to 512-fold. Furthermore, (-)-α-pinene promotes increased expression of cmeABC and another putative antimicrobial efflux gene, Cj1687. The ethidium bromide accumulation was greater in the wild-type strain than in the antimicrobial efflux mutant strains, which indicates that these antimicrobial efflux systems are a target of action of (-)-α-pinene. Additionally, (-)-α-pinene decreases membrane integrity, which suggests that enhanced microbial influx is a secondary mode of action of (-)-α-pinene. Transcriptomic analysis indicated that (-)-α-pinene disrupts multiple metabolic pathways, and particularly those involved in heat-shock responses. Thus, (-)-α-pinene has significant activity in the modulation of antibiotic resistance in C. jejuni, which appears to be mediated by multiple mechanisms that include inhibition of microbial efflux, decreased membrane integrity, and metabolic disruption. These data warrant further studies on (-)-α-pinene to develop its use in the control of antibiotic resistance in Campylobacter.
International Journal of Food Microbiology | 2015
Béla Nagy; Ama Szmolka; Sonja Smole Možina; Jasna Kovač; Anja Strauss; S. Schlager; Janine Beutlich; Bernd Appel; M. Lušicky; Pavel Aprikian; Judit Pászti; Istvan Toth; Renáta Kugler; Martin Wagner
The aim of this study was to reveal phenotype/genotype characteristics of verotoxigenic Escherichia coli (VTEC) and multidrug resistant E. coli in food products of animal origin confiscated as illegal import at Austrian, German and Slovenian airports. VTEC isolates were obtained by using ISO guidelines 16654:2001 for O157 VTEC or ISO/ TS13136:2012 for non-O157 VTEC, with additional use of the RIDASCREEN® Verotoxin immunoassay. The testing of 1526 samples resulted in 15 VTEC isolates (1.0%) primarily isolated from hard cheese from Turkey and Balkan countries. Genotyping for virulence by using a miniaturized microarray identified a wide range of virulence determinants. One VTEC isolate (O26:H46) possessing intimin (eae) and all other essential genes of Locus of Enterocyte Effacement (LEE) was designated as enterohemorrhagic E. coli (EHEC). None of the other VTEC strains belonged to serogroups O157, O145, O111, O104 or O103. VTEC strains harbored either stx(1) (variants stx1(a) or stx(1c)) or st(x2) (variants stx(2a), stx(2b), stx(2a/d) or stx(2c/d)) genes. Pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) demonstrated high genetic diversity and identified three new sequence types (STs): 4505, 4506 and 4507. Food samples collected from the Vienna airport were also tested for E. coli quantities using the ISO 16649:2001, and for detection of multidrug resistant phenotypes and genotypes. The resulting 113 commensal E. coli isolates were first tested in a pre-screening against 6 selected antimicrobials to demonstrate multidrug resistance. The resulting 14 multidrug resistant (MDR) E. coli isolates, representing 0.9% of the samples, were subjected to further resistance phenotyping and to microarray analyses targeting genetic markers of antimicrobial resistance and virulence. Genotyping revealed various combinations of resistance determinants as well as the presence of class 1, class 2 integrons. The isolates harbored 6 to 11 antibiotic resistance genes as well as 1 to 14 virulence genes. In this panel of 14 MDR E. coli two strains proved to carry CTX-M type ESBLs, and one single isolate was identified as enteropathogenic E. coli (EPEC). In general, isolates carrying a high number of resistance determinants had lower number of virulence genes and vice versa. In conclusion, this first pilot study on the prevalence of VTEC and of MDR/ESBL E. coli in illegally imported food products of animal origin suggests that these strains could represent reservoirs for dissemination of potentially new types of pathogenic and MDR E. coli in Europe.
Journal of Applied Microbiology | 2012
Anja Klančnik; B. Gröblacher; Jasna Kovač; S. Smole Možina
We tested extracts from Alpinia katsumadai seeds for anti‐Campylobacter activity and investigated the roles of the CmeABC and CmeDEF efflux pumps in Campylobacter resistance to these natural phenolics. Additionally, we investigated an A. katsumadai ethanolic extract (AlpE) and other plant extracts as putative efflux pump inhibitors on Campylobacter isolates and mutants in efflux pump genes.
Frontiers in Microbiology | 2015
Jasna Kovač; Neža Čadež; Beatrix Stessl; Kerstin Stingl; Igor Gruntar; Matjaž Ocepek; Marija Trkov; Martin Wagner; Sonja Smole Možina
Campylobacteriosis is the leading zoonosis in the European Union with the majority of cases attributed to Campylobacter jejuni. Although the disease is usually self-limiting, some severe cases need to be treated with antibiotics, primarily macrolides and quinolones. However, the resistance to the latter is reaching alarming levels in most of the EU countries. To shed light on the expansion of antibiotic resistance in central Europe, we have investigated genetic similarity across 178 ciprofloxacin-resistant C. jejuni mostly isolated in Slovenia, Austria and Germany. We performed comparative genetic similarity analyses using allelic types of seven multilocus sequence typing housekeeping genes, and single nucleotide polymorphisms of a quinolone resistance determining region located within the DNA gyrase subunit A gene. This analysis revealed high genetic similarity of isolates from clonal complex ST-21 that carry gyrA allelic type 1 in all three of these central-European countries, suggesting these ciprofloxacin resistant isolates arose from a recent common ancestor and are spread clonally.
Food Technology and Biotechnology | 2014
Jasna Kovač; Neda Gavarić; Sonja Smole Mozina
Fems Microbiology Letters | 2014
Nika Janež; Andreja Kokošin; Eva Zaletel; Tanja Vranac; Jasna Kovač; Darinka Vučković; Sonja Smole Možina; Vladka Čurin Šerbec; Qijing Zhang; Tomaž Accetto; Aleš Podgornik; Matjaž Peterka
Archive | 2015
Neda Gavarić; Jasna Kovač; Nadine Kretschmer; Sonja Smole Možina Nebojša Kladar; Rudolf Bauer; Biljana Božin
Archive | 2015
Béla Nagy; Sonja Smole-Možina; Jasna Kovač; Martin Wagner; Dagmar Schoder; Anja Strauss; S. Schlager; Janine Beutlich; Bernd Appel; M. Lušicky; M. Cimerman; Pavel Aprikian; Istvan Toth; Renáta Kugler; Ama Szmolka
Book of Abstracts | 2015
Jasna Kovač; Zuowei Wu; Anja Klančnik; Darinka Vučković; Maja Abram; Qijing Zhang; Sonja Smole Možina