Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jasna Peter-Katalinić is active.

Publication


Featured researches published by Jasna Peter-Katalinić.


FEBS Letters | 1989

Amino acid sequence of the crustacean hyperglycemic hormone (CHH) from the shore crab, Carcinus maenas.

Günter Kegel; Barbara Reichwein; Susanne Weese; Gabriele Gaus; Jasna Peter-Katalinić; Rainer Keller

Crustacean hyperglycemic hormone (CHH) was isolated from sinus glands of Carcinus maenas, and its primary structure was determined by manual microsequencing, using the DABITC‐PITC double‐coupling method. The neurohormone consists of 72 amino acid residues (8524 Da). Three disulfide bridges are present and both the N‐ and C‐terminus are blocked. CHH does not show significant sequence homology to any known peptide hormone or protein.


Methods in Enzymology | 2005

Methods in Enzymology: O‐Glycosylation of Proteins

Jasna Peter-Katalinić

Cell surface and extracellular proteins are O-glycosylated, where the most abundant type of O-glycosylation in proteins is the GalNAc attachment to serine (Ser) or threonine (Thr) in the protein chain by an a-glycosidic linkage. Most eukaryotic nuclear and cytoplasmic proteins modified by a-linked O-GlcNAc to Ser or Thr exhibit reciprocal O-GlcNAc glycosylation and phosphorylation during the cell cycle, cell stimulation, and/or cell growth. Less-investigated types of O-glycosylation are O-fucosylation, O-mannosylation, and O-glucosylation, but they are functionally of high relevance for early stages of development and for vital physiological functions of proteins. Glycosaminoglycans are a-linked to proteoglycans via a xylose-containing tetrasaccharide, represented by linear chains of repetitive disaccharides modified by carboxylates and O- or/and N-linked sulfates. Analysis of O-glycosylation by mass spectrometry (MS) is a complex task due to the high structural diversity of glycan and protein factors. The parameters in structural analysis of O-glycans include determination of (i) O-glycosylation attachment sites in the protein sequence, (ii) the type of attached monosaccharide moiety, (iii) a core type in the case of GalNAc O-glycosylation, (iv) the type and size of the oligosaccharide portion, (v) carbohydrate branching patterns, (vi) the site of monosaccharide glycosidic linkages, (vii) the anomericity of glycosidic linkages, and (viii) covalent modifications of the sugar backbone chains by carbohydrate- and noncarbohydrate-type of substitutents. Classical and novel analytical strategies for identification and sequencing of O-glycans by MS are described. These include methods to analyze O-glycans after total or partial release from the parent protein by chemical or enzymatic approach or to analyze O-glycosylated peptides by mapping and sequencing from proteolytic mixtures. A recombination process of multiply charged glycopeptides with electrons by electron capture dissociation Fourier transform ion cyclotrone resonance (FTICR)-MS has been introduced and is instrumental for nonergodic polypeptide backbone cleavages without losses of labile glycan substituents. A method for O-glycoscreening under increased sensitivity and efficient sequencing as a combination of an on-line coupling of capillary electrophoresis separation, as well as an automated MS-tandem MS (MS/MS) switching under variable energy conditions collision-induced dissociation (CID) protocol, is beneficial for determination of O-acetylation and oversulfation (Bindila et al., 2004a; Zamfir et al., 2004a). O-glycomics by robotized chip-electrospray/ionization (ESI)-MS and MS/MS on the quadrupole time-of-flight (QTOF) and FTICR analyzers, accurate mass determination, and software for assignment of fragmentation spectra represent essentials for high-throughput (HTP) in serial screenings (Bindila et al., 2004b; Froesch et al., 2004; Vakhrushev et al., 2005). Dimerization of intact O-glycosylated proteins can be investigated by matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF)-MS after blotting.


Journal of Biological Chemistry | 1999

High Density O-Glycosylation on Tandem Repeat Peptide from Secretory MUC1 of T47D Breast Cancer Cells

Stefan Müller; Kim Alving; Jasna Peter-Katalinić; Natasha E. Zachara; Andrew A. Gooley; Franz-Georg Hanisch

The site-specificO-glycosylation of MUC1 tandem repeat peptides from secretory mucin of T47D breast cancer cells was analyzed. After affinity isolation on immobilized BC3 antibody, MUC1 was partially deglycosylated by enzymatic treatment with α-sialidase/β-galactosidase and fragmented by proteolytic cleavage with the Arg-C-specific endopeptidase clostripain. The PAP20 glycopeptides were isolated by reversed phase high pressure liquid chromatography and subjected to the structural analyses by quadrupole time-of-flight electrospray ionization mass spectrometry and to the sequencing by Edman degradation. All five positions of the repeat peptide were revealed as O-glycosylation targets in the tumor cell, including the Thr within the DTR motif. The degree of substitution was estimated to average 4.8 glycans per repeat, which compares to 2.6 glycosylated sites per repeat for the mucin from milk (Müller, S., Goletz, S., Packer, N., Gooley, A. A., Lawson, A. M., and Hanisch, F.-G. (1997) J. Biol. Chem.272, 24780–24793). In addition to a modification by glycosylation, the immunodominant DTR motif on T47D-MUC1 is altered by amino acid replacements (PAPGSTAPAAHGVTSAPESR), which were revealed in about 50% of PAP20 peptides. The high incidence of these replacements and their detection also in other cancer cell lines imply that the conserved tandem repeat domain of MUC1 is polymorphic with respect to the peptide sequence.


Journal of Clinical Investigation | 2001

A mutation in the human MPDU1 gene causes congenital disorder of glycosylation type If (CDG-If)

Christian Kranz; Jonas Denecke; Mark A. Lehrman; Sutapa Ray; Petra Kienz; Gunilla Kreissel; Dijana Šagi; Jasna Peter-Katalinić; Hudson H. Freeze; Thomas Schmid; Sabine Jackowski-Dohrmann; Erik Harms; Thorsten Marquardt

We describe a new congenital disorder of glycosylation, CDG-If. The patient has severe psychomotor retardation, seizures, failure to thrive, dry skin and scaling with erythroderma, and impaired vision. CDG-If is caused by a defect in the gene MPDU1, the human homologue of hamster Lec35, and is the first disorder to affect the use, rather than the biosynthesis, of donor substrates for lipid-linked oligosaccharides. This leads to the synthesis of incomplete and poorly transferred precursor oligosaccharides lacking both mannose and glucose residues. The patient has a homozygous point mutation (221T-->C, L74S) in a semiconserved amino acid of MPDU1. Chinese hamster ovary Lec35 cells lack a functional Lec35 gene and synthesize truncated lipid-linked oligosaccharides similar to the patients. They lack glucose and mannose residues donated by Glc-P-Dol and Man-P-Dol. Transfection with the normal human MPDU1 allele nearly completely restores normal glycosylation, whereas transfection with the patients MPDU1 allele only weakly restores normal glycosylation. This work provides a new clinical picture for another CDG that may involve synthesis of multiple types of glycoconjugates.


Molecular & Cellular Proteomics | 2002

C-Mannosylation and O-Fucosylation of Thrombospondin Type 1 Repeats

Anne Gonzalez de Peredo; Dominique Klein; Boris Macek; Daniel Hess; Jasna Peter-Katalinić; Jan Hofsteenge

The final chemical structure of a newly synthesized protein is often only attained after further covalent modification. Ideally, a comprehensive proteome analysis includes this aspect, a task that is complicated by our incomplete knowledge of the range of possible modifications and often by the lack of suitable analysis methods. Here we present two recently discovered, unusual forms of protein glycosylation, i.e. C-mannosylation and O-fucosylation. Their analysis by a combined mass spectrometric approach is illustrated with peptides from the thrombospondin type 1 repeats (TSRs) of the recombinant axonal guidance protein F-spondin. Nano-electrospray ionization tandem-mass spectrometry of isolated peptides showed that eight of ten Trp residues in the TSRs of F-spondin are C-mannosylated. O-Fucosylation sites were determined by a recently established nano-electrospray ionization quadrupole time-of-flight tandem-mass spectrometry approach. Four of five TSRs carry the disaccharide Hex-dHex-O-Ser/Thr in close proximity to the C-mannosylation sites. In analogy to thrombospondin-1, we assume this to be Glc-Fuc-O-Ser/Thr. Our current knowledge of these glycosylations will be discussed.


Biological chemistry Hoppe-Seyler | 1988

Fucose-containing oligosaccharides from human milk from a donor of blood group 0 Le(a) nonsecretor.

Renate Bruntz; Ursula Dabrowski; Janusz Dabrowski; Anneliese Ebersold; Jasna Peter-Katalinić; Heinz Egge

The neutral oligosaccharides from the milk of a single donor with blood group 0, Lewis(a+b-) nonsecretor were separated into 18 fractions essentially according to the number of carbohydrate constituents using gel permeation chromatography on Biogel P-4 and Fractogel TSK HW-40. Further separation was achieved by HPLC and by HPTLC after reduction and peracetylation. The fractions obtained were analysed by FAB mass spectrometry with and without derivatization and by one- and two-dimensional proton NMR. Besides the already described 3-fucosidolactose, fucopentaose II (2), fucopentaose III (6) and difucohexaose II (4) the following fucosylated oligosaccharides could be identified. Among the higher oligosaccharides a branched lacto-N-decaose (12) was obtained in pure form after removal of the fucose residues by mild acid treatment.


Journal of the American Society for Mass Spectrometry | 2002

Sequencing of tri- and tetraantennary N-glycans containing sialic acid by negative mode ESI QTOF tandem MS

Dijana Šagi; Jasna Peter-Katalinić; Harald S. Conradt; Manfred Nimtz

Application of the negative mode electrospray ionization-quadrupole time-of-flight mass spectrometry (ESI QTOF) tandem MS for determination of substitution patterns by sialic acid and/or fucose and extention by additional LacNAc disaccharide units in single branches of multiantennary N-glycans from biological samples is described. Fragmentation patterns which can be obtained by low energy collision-induced dissociation (CID) using the QTOF instrument include cleavage ions, diagnostic for determination of antennarity and for specific structural features of single antennae. Systematic fragmentation studies in the negative ion mode were focussed toward formation of the D diagnostic ion relevant for assignment of 3- and 6-antennae in complex N-glycans carrying three and four antennae in combination with epitope-relevant B- and C-type ions. For validation of this approach ESI QTOF fragmentation of the permethylated analogues was carried out in the positive ion mode. Using this strategy, products of in vitro glycosylation reactions were investigated in order to clarify some general aspects of N-glycan acceptor specificity during biosynthesis. α1-3fucosylation using GDP-fucose along with a soluble form of the recombinant human α1-3fucosyltransferase VI was carried out on tri- and tetraantennary precursors to test structural requirements for formation of Lex versus sLex motifs.


Journal of Proteome Research | 2011

Elucidation of Glycoprotein Structures by Unspecific Proteolysis and Direct nanoESI Mass Spectrometric Analysis of ZIC-HILIC-Enriched Glycopeptides

Kristina Neue; Michael Mormann; Jasna Peter-Katalinić; Gottfried Pohlentz

Protein glycosylation was explored by direct nanoESI MS and MS/MS analysis of ZIC-HILIC-enriched proteolytic glycopeptides without further separation or purification. In a previous publication, we demonstrated that a direct MS-based analysis of proteolytic glycopeptides is feasible for a number of proteins (Henning , S. J. Mass Spectrom. 2007 , 42 , 1415 - 21). This method has now been refined for two aspects: (1) separation of glycopeptides by use of ZIC-HILIC SPE and (2) the use of unspecific proteases like thermolysin, elastase, or a trypsin/chymotrypsin mixture leading per se to a mass-based separation, that is, small nonglycosylated peptides and almost exclusively glycopeptides at higher m/z values. Furthermore, the glycopeptides produced by the above proteases in general contain short peptide backbones thus improving-probably due to their higher hydrophilicity--the ZIC-HILIC-based separation. The combination of unspecific proteolysis, glycopeptide separation, and their direct MS analysis was successfully accomplished for probing glycoproteins carrying high-mannose type (ribonuclease B), neutral (asialofetuin), and acidic (haptoglobin and α1-acid glycoprotein) complex type glycans as well as for glycopeptides derived from glycoprotein mixtures and, finally, for exploring the glycosylation of a human IgG preparation. Our results show that the presented method is a fast, facile, and inexpensive procedure for the elucidation of protein N-glycosylation.


Journal of Proteome Research | 2010

Discovery of a Novel Unfolded Protein Response Phenotype of Cancer Stem/Progenitor Cells from the Bone Marrow of Breast Cancer Patients

Kai Bartkowiak; Katharina E. Effenberger; Sönke Harder; Antje Andreas; Friedrich Buck; Jasna Peter-Katalinić; Klaus Pantel; Burkhard Brandt

Metastases arise from disseminated tumor cells (DTC) that colonize secondary organs. However, DTC survival strategies to start metastatic outgrowth are unclear. The hostile (hypoxic, hypoglycemic) microenvironmental conditions of the bone marrow serve as an ideal model environment for investigation of DTC survival strategies under environmental stress. We investigated the breast cancer DTC cell line BC-M1 established from the bone marrow of a cancer patient by 2-D DIGE and MS analysis. We observed specific overexpression of the unfolded protein response (UPR) proteins Grp78, Grp94, and protein disulfide-isomerase in breast, lung, and prostate cancer DTC cell lines from the bone marrow. The UPR contributes to survival under adverse environmental conditions including chemotherapy. We show in cellular models that Grp78 expression of the UPR is regulated by tyrosine 1248 of ErbB-2. The breast cancer DTC cell lines shared stem/progenitor cell cancer phenotypes (CD44(high)/CD24(low)). Immunocytochemical staining of bone marrow samples from breast cancer patients confirmed in situ high expression of Grp78 and Grp94 in DTC of breast cancer patients, indicating the potential of both proteins as novel markers for DTC detection. Our results suggest the presence of a previously not recognized stress resistant DTC population that combines stem/progenitor attributes with an UPR phenotype.


Analytical Chemistry | 2008

Matching IR-MALDI-o-TOF mass spectrometry with the TLC overlay binding assay and its clinical application for tracing tumor-associated glycosphingolipids in hepatocellular and pancreatic cancer.

Ute Distler; Marcel Hülsewig; Jamal Souady; Klaus Dreisewerd; Jörg Haier; Norbert Senninger; Alexander W. Friedrich; Helge Karch; Franz Hillenkamp; Stefan Berkenkamp; Jasna Peter-Katalinić; Johannes Müthing

Glycosphingolipids (GSLs), composed of a hydrophilic carbohydrate chain and a lipophilic ceramide anchor, play pivotal roles in countless biological processes, including the development of cancer. As part of the investigation of the vertebrate glycome, GSL analysis is undergoing rapid expansion owing to the application of modern mass spectrometry. Here we introduce direct coupling of IR-MALDI-o-TOF mass spectrometry with the TLC overlay binding assay for the structural characterization of GSLs. We matched three complementary methods including (i) TLC separation of GSLs, (ii) their detection with oligosaccharide-specific proteins, and (iii) in situ MS analysis of protein-detected GSLs. The high specificity and sensitivity is demonstrated by use of antibodies, bacterial toxins, and a plant lectin. The procedure works on a nanogram scale, and detection limits of less than 1 ng at its best of immunostained GSLs were obtained. Furthermore, only crude lipid extracts of biological sources are required for TLC-IR-MALDI-MS, omitting any laborious GSL downstream purification procedures. This strategy was successfully applied to the identification of cancer-associated GSLs in human hepatocellular and pancreatic tumors. Thus, the in situ TLC-IR-MALDI-MS of immunolabeled GSLs opens new doors by delivering specific structural information of trace quantities of GSLs with only a limited investment in sample preparation.

Collaboration


Dive into the Jasna Peter-Katalinić's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge