Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason A. Dubovsky is active.

Publication


Featured researches published by Jason A. Dubovsky.


Blood | 2013

Ibrutinib is an irreversible molecular inhibitor of ITK driving a Th1-selective pressure in T lymphocytes

Jason A. Dubovsky; Kyle A. Beckwith; Gayathri Natarajan; Jennifer A. Woyach; Samantha Jaglowski; Yiming Zhong; Joshua Hessler; Ta-Ming Liu; Betty Y. Chang; Karilyn Larkin; Matthew R. Stefanovski; Danielle L. Chappell; Frank Frissora; Lisa L. Smith; Kelly A. Smucker; Joseph M. Flynn; Jeffrey A. Jones; Leslie A. Andritsos; Kami Maddocks; Amy Lehman; Richard R. Furman; Jeff P. Sharman; Anjali Mishra; Michael A. Caligiuri; Abhay R. Satoskar; Joseph J. Buggy; Natarajan Muthusamy; Amy J. Johnson; John C. Byrd

Given its critical role in T-cell signaling, interleukin-2-inducible kinase (ITK) is an appealing therapeutic target that can contribute to the pathogenesis of certain infectious, autoimmune, and neoplastic diseases. Ablation of ITK subverts Th2 immunity, thereby potentiating Th1-based immune responses. While small-molecule ITK inhibitors have been identified, none have demonstrated clinical utility. Ibrutinib is a confirmed irreversible inhibitor of Bruton tyrosine kinase (BTK) with outstanding clinical activity and tolerability in B-cell malignancies. Significant homology between BTK and ITK alongside in silico docking studies support ibrutinib as an immunomodulatory inhibitor of both ITK and BTK. Our comprehensive molecular and phenotypic analysis confirms ITK as an irreversible T-cell target of ibrutinib. Using ibrutinib clinical trial samples along with well-characterized neoplastic (chronic lymphocytic leukemia), parasitic infection (Leishmania major), and infectious disease (Listeria monocytogenes) models, we establish ibrutinib as a clinically relevant and physiologically potent ITK inhibitor with broad therapeutic utility. This trial was registered at www.clinicaltrials.gov as #NCT01105247 and #NCT01217749.


Blood | 2014

Bruton’s tyrosine kinase (BTK) function is important to the development and expansion of chronic lymphocytic leukemia (CLL)

Jennifer A. Woyach; Engin Bojnik; Amy S. Ruppert; Matthew R. Stefanovski; Virginia M. Goettl; Kelly A. Smucker; Lisa L. Smith; Jason A. Dubovsky; William H. Towns; Jessica MacMurray; Bonnie K. Harrington; Melanie E. Davis; Stefania Gobessi; Luca Laurenti; Betty Y. Chang; Joseph J. Buggy; Dimitar G. Efremov; John C. Byrd; Amy J. Johnson

Chronic lymphocytic leukemia (CLL) is characterized by constitutive activation of the B-cell receptor (BCR) signaling pathway, but variable responsiveness of the BCR to antigen ligation. Brutons tyrosine kinase (BTK) shows constitutive activity in CLL and is the target of irreversible inhibition by ibrutinib, an orally bioavailable kinase inhibitor that has shown outstanding activity in CLL. Early clinical results in CLL with other reversible and irreversible BTK inhibitors have been less promising, however, raising the question of whether BTK kinase activity is an important target of ibrutinib and also in CLL. To determine the role of BTK in CLL, we used patient samples and the Eμ-TCL1 (TCL1) transgenic mouse model of CLL, which results in spontaneous leukemia development. Inhibition of BTK in primary human CLL cells by small interfering RNA promotes apoptosis. Inhibition of BTK kinase activity through either targeted genetic inactivation or ibrutinib in the TCL1 mouse significantly delays the development of CLL, demonstrating that BTK is a critical kinase for CLL development and expansion and thus an important target of ibrutinib. Collectively, our data confirm the importance of kinase-functional BTK in CLL.


Blood | 2014

Increased T follicular helper cells and germinal center B cells are required for cGVHD and bronchiolitis obliterans

Ryan Flynn; Jing Du; Rachelle G. Veenstra; Dawn K. Reichenbach; Angela Panoskaltsis-Mortari; Patricia A. Taylor; Gordon J. Freeman; Jonathan S. Serody; William J. Murphy; David H. Munn; Stefanie Sarantopoulos; Leo Luznik; Ivan Maillard; John Koreth; Corey Cutler; Robert J. Soiffer; Joseph H. Antin; Jerome Ritz; Jason A. Dubovsky; John C. Byrd; Kelli P. A. MacDonald; Geoff R. Hill; Bruce R. Blazar

Chronic graft-versus-host disease (cGVHD) is a leading cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation. Having shown that germinal center (GC) formation and immunoglobulin deposition are required for multiorgan system cGVHD and associated bronchiolitis obliterans syndrome (BOS) in a murine model, we hypothesized that T follicular helper (Tfh) cells are necessary for cGVHD by supporting GC formation and maintenance. We show that increased frequency of Tfh cells correlated with increased GC B cells, cGVHD, and BOS. Although administering a highly depletionary anti-CD20 monoclonal antibody (mAb) to mice with established cGVHD resulted in peripheral B-cell depletion, B cells remained in the lung, and BOS was not reversed. BOS could be treated by eliminating production of interleukin-21 (IL-21) by donor T cells or IL-21 receptor (IL-21R) signaling of donor B cells. Development of BOS was dependent upon T cells expressing the chemokine receptor CXCR5 to facilitate T-cell trafficking to secondary lymphoid organ follicles. Blocking mAbs for IL-21/IL-21R, inducible T-cell costimulator (ICOS)/ICOS ligand, and CD40L/CD40 hindered GC formation and cGVHD. These data provide novel insights into cGVHD pathogenesis, indicate a role for Tfh cells in these processes, and suggest a new line of therapy using mAbs targeting Tfh cells to reverse cGVHD.


Journal of Clinical Investigation | 2014

Ibrutinib treatment ameliorates murine chronic graft-versus-host disease

Jason A. Dubovsky; Ryan Flynn; Jing Du; Bonnie K. Harrington; Yiming Zhong; Benjamin H. Kaffenberger; Carrie Yang; William H. Towns; Amy Lehman; Amy J. Johnson; Natarajan Muthusamy; Steven M. Devine; Samantha Jaglowski; Jonathan S. Serody; William J. Murphy; David H. Munn; Leo Luznik; Geoffrey R. Hill; Henry K. Wong; Kelli Pa MacDonald; Ivan Maillard; John Koreth; Laurence Elias; Corey Cutler; Robert J. Soiffer; Joseph H. Antin; Jerome Ritz; Angela Panoskaltsis-Mortari; John C. Byrd; Bruce R. Blazar

Chronic graft-versus-host disease (cGVHD) is a life-threatening impediment to allogeneic hematopoietic stem cell transplantation, and current therapies do not completely prevent and/or treat cGVHD. CD4+ T cells and B cells mediate cGVHD; therefore, targeting these populations may inhibit cGVHD pathogenesis. Ibrutinib is an FDA-approved irreversible inhibitor of Brutons tyrosine kinase (BTK) and IL-2 inducible T cell kinase (ITK) that targets Th2 cells and B cells and produces durable remissions in B cell malignancies with minimal toxicity. Here, we evaluated whether ibrutinib could reverse established cGVHD in 2 complementary murine models, a model interrogating T cell-driven sclerodermatous cGVHD and an alloantibody-driven multiorgan system cGVHD model that induces bronchiolar obliterans (BO). In the T cell-mediated sclerodermatous cGVHD model, ibrutinib treatment delayed progression, improved survival, and ameliorated clinical and pathological manifestations. In the alloantibody-driven cGVHD model, ibrutinib treatment restored pulmonary function and reduced germinal center reactions and tissue immunoglobulin deposition. Animals lacking BTK and ITK did not develop cGVHD, indicating that these molecules are critical to cGVHD development. Furthermore, ibrutinib treatment reduced activation of T and B cells from patients with active cGVHD. Our data demonstrate that B cells and T cells drive cGVHD and suggest that ibrutinib has potential as a therapeutic agent, warranting consideration for cGVHD clinical trials.


Blood | 2014

IPI-145 antagonizes intrinsic and extrinsic survival signals in chronic lymphocytic leukemia cells.

Shuai Dong; Daphne Guinn; Jason A. Dubovsky; Yiming Zhong; Amy Lehman; Jeffery L. Kutok; Jennifer A. Woyach; John C. Byrd; Amy J. Johnson

Chronic lymphocytic leukemia (CLL) displays constitutive phosphatidylinositol 3-kinase (PI3K) activation resulting from aberrant regulation of B-cell receptor (BCR) signaling. Previous studies have shown that an oral PI3K p110δ inhibitor idelalisib exhibits promising activity in CLL. Here, we demonstrate that a dual PI3K p110δ and p110γ inhibitor, IPI-145, antagonizes BCR crosslinking activated prosurvival signals in primary CLL cells. IPI-145 causes direct killing in primary CLL cells in a dose- and time-dependent fashion, but does not generate direct cytotoxicity to normal B cells. However, IPI-145 does reduce the viability of normal T and natural killer cells and decrease activated T-cell production of various inflammatory and antiapoptotic cytokines. Furthermore, IPI-145 overcomes the ibrutinib resistance resulting from treatment-induced BTK C481S mutation. Collectively, these studies provide rationale for ongoing clinical evaluation of IPI-145 as a targeted therapy for CLL and related B-cell lymphoproliferative disorders.


Blood | 2015

Hypermorphic mutation of phospholipase C, γ2 acquired in ibrutinib-resistant CLL confers BTK independency upon B-cell receptor activation

Ta-Ming Liu; Jennifer A. Woyach; Yiming Zhong; Arletta Lozanski; Gerard Lozanski; Shuai Dong; Ethan Strattan; Amy Lehman; Xiaoli Zhang; Jeffrey A. Jones; Joseph M. Flynn; Leslie A. Andritsos; Kami Maddocks; Samantha Jaglowski; Kristie A. Blum; John C. Byrd; Jason A. Dubovsky; Amy J. Johnson

Ibrutinib has significantly improved the outcome of patients with relapsed chronic lymphocytic leukemia (CLL). Recent reports attribute ibrutinib resistance to acquired mutations in Bruton agammaglobulinemia tyrosine kinase (BTK), the target of ibrutinib, as well as the immediate downstream effector phospholipase C, γ2 (PLCG2). Although the C481S mutation found in BTK has been shown to disable ibrutinibs capacity to irreversibly bind this primary target, the detailed mechanisms of mutations in PLCG2 have yet to be established. Herein, we characterize the enhanced signaling competence, BTK independence, and surface immunoglobulin dependence of the PLCG2 mutation at R665W, which has been documented in ibrutinib-resistant CLL. Our data demonstrate that this missense alteration elicits BTK-independent activation after B-cell receptor engagement, implying the formation of a novel BTK-bypass pathway. Consistent with previous results, PLCG2(R665W) confers hypermorphic induction of downstream signaling events. Our studies reveal that proximal kinases SYK and LYN are critical for the activation of mutant PLCG2 and that therapeutics targeting SYK and LYN can combat molecular resistance in cell line models and primary CLL cells from ibrutinib-resistant patients. Altogether, our results engender a molecular understanding of the identified aberration at PLCG2 and explore its functional dependency on BTK, SYK, and LYN, suggesting alternative strategies to combat acquired ibrutinib resistance.


Cancer Research | 2016

Myeloid-derived suppressor cells express Bruton's tyrosine kinase and can be depleted in tumor bearing hosts by ibrutinib treatment

Andrew Stiff; Prashant Trikha; Robert Wesolowski; Kari Kendra; Vincent Hsu; Sarvani Uppati; Elizabeth McMichael; Megan C. Duggan; Amanda Campbell; Karen Keller; Ian Landi; Yiming Zhong; Jason A. Dubovsky; John Harrison Howard; Lianbo Yu; Bonnie K. Harrington; Matthew Old; Sean D. Reiff; Thomas A. Mace; Susheela Tridandapani; Natarajan Muthusamy; Michael A. Caligiuri; John C. Byrd; William E. Carson

Myeloid-derived suppressor cells (MDSC) are a heterogeneous group of immature myeloid cells that expand in tumor-bearing hosts in response to soluble factors produced by tumor and stromal cells. MDSC expansion has been linked to loss of immune effector cell function and reduced efficacy of immune-based cancer therapies, highlighting the MDSC population as an attractive therapeutic target. Ibrutinib, an irreversible inhibitor of Brutons tyrosine kinase (BTK) and IL2-inducible T-cell kinase (ITK), is in clinical use for the treatment of B-cell malignancies. Here, we report that BTK is expressed by murine and human MDSCs, and that ibrutinib is able to inhibit BTK phosphorylation in these cells. Treatment of MDSCs with ibrutinib significantly impaired nitric oxide production and cell migration. In addition, ibrutinib inhibited in vitro generation of human MDSCs and reduced mRNA expression of indolamine 2,3-dioxygenase, an immunosuppressive factor. Treatment of mice bearing EMT6 mammary tumors with ibrutinib resulted in reduced frequency of MDSCs in both the spleen and tumor. Ibrutinib treatment also resulted in a significant reduction of MDSCs in wild-type mice bearing B16F10 melanoma tumors, but not in X-linked immunodeficiency mice (XID) harboring a BTK mutation, suggesting that BTK inhibition plays an important role in the observed reduction of MDSCs in vivo Finally, ibrutinib significantly enhanced the efficacy of anti-PD-L1 (CD274) therapy in a murine breast cancer model. Together, these results demonstrate that ibrutinib modulates MDSC function and generation, revealing a potential strategy for enhancing immune-based therapies in solid malignancies. Cancer Res; 76(8); 2125-36. ©2016 AACR.


Blood | 2017

Ibrutinib for chronic graft-versus-host disease after failure of prior therapy

David B. Miklos; Corey Cutler; Mukta Arora; Edmund K. Waller; Madan Jagasia; Iskra Pusic; Mary E.D. Flowers; Aaron C Logan; Ryotaro Nakamura; Bruce R. Blazar; Yunfeng Li; Stephen Chang; Indu Lal; Jason A. Dubovsky; Danelle F. James; Lori Styles; Samantha Jaglowski

Chronic graft-versus-host disease (cGVHD) is a serious complication of allogeneic stem cell transplantation with few effective options available after failure of corticosteroids. B and T cells play a role in the pathophysiology of cGVHD. Ibrutinib inhibits Bruton tyrosine kinase in B cells and interleukin-2-inducible T-cell kinase in T cells. In preclinical models, ibrutinib reduced severity of cGVHD. This multicenter, open-label study evaluated the safety and efficacy of ibrutinib in patients with active cGVHD with inadequate response to corticosteroid-containing therapies. Forty-two patients who had failed 1 to 3 prior treatments received ibrutinib (420 mg) daily until cGVHD progression. The primary efficacy end point was cGVHD response based on 2005 National Institutes of Health criteria. At a median follow-up of 13.9 months, best overall response was 67%; 71% of responders showed a sustained response for ≥20 weeks. Responses were observed across involved organs evaluated. Most patients with multiple cGVHD organ involvement had a multiorgan response. Median corticosteroid dose in responders decreased from 0.29 mg/kg per day at baseline to 0.12 mg/kg per day at week 49; 5 responders discontinued corticosteroids. The most common adverse events were fatigue, diarrhea, muscle spasms, nausea, and bruising. Plasma levels of soluble factors associated with inflammation, fibrosis, and cGVHD significantly decreased over time with ibrutinib. Ibrutinib resulted in clinically meaningful responses with acceptable safety in patients with ≥1 prior treatments for cGVHD. Based on these results, ibrutinib was approved in the United States for treatment of adult patients with cGVHD after failure of 1 or more lines of systemic therapy. This trial was registered at www.clinicaltrials.gov as #NCT02195869.


Clinical Cancer Research | 2009

Treatment of Chronic Lymphocytic Leukemia with a Hypomethylating Agent Induces Expression of NXF2, an Immunogenic Cancer Testis Antigen

Jason A. Dubovsky; Douglas G. McNeel; John Powers; John Gordon; Eduardo M. Sotomayor; Javier Pinilla-Ibarz

Purpose: Critical to the success of active immunotherapy against cancer is the identification of immunologically recognized cancer-specific proteins with low tolerogenic potential. Cancer testis antigens (CTA), in particular, fulfill this requirement as a result of their aberrant expression restricted to cancer cells and lack of expression in normal tissues bypassing tolerogenic mechanisms against self. Although CTAs have been extensively studied in solid malignancies, little is known regarding their expression in chronic lymphocytic leukemia (CLL). Experimental Design: Using a two-pronged approach we evaluated the immunogenicity of 29 CTAs in 22 patients with CLL and correlated these results to reverse transcriptase PCR data from CLL cell lines and patient cells. Results: We identified IgG-specific antibodies for one antigen, NXF2, and confirmed this response by ELISA and Western blot. We found that treatment of CLL with 5-aza-2′-deoxycytidine can induce expression of NXF2 that lasted for several weeks after treatment. Treatment also increased levels of MHC and costimulatory molecules (CD80, CD86, and CD40) necessary for antigen presentation. In addition, we identified other promising antigens that may have potential immunotherapeutic application. Conclusions: Our findings suggest that NXF2 could be further pursued as an immunotherapeutic target in CLL, and that treatment with demethylating agents could be exploited to specifically modulate CTA expression and effective antigen presentation in malignant B cells.


Leukemia & Lymphoma | 2011

A molecular and functional analysis of large granular lymphocyte expansions in patients with chronic myelogenous leukemia treated with tyrosine kinase inhibitors

John Powers; Jason A. Dubovsky; P.K. Epling-Burnette; Lynn C. Moscinski; Ling Zhang; Satu Mustjoki; Eduardo M. Sotomayor; Javier Pinilla-Ibarz

Tyrosine kinase inhibitor (TKI) therapy has become the standard treatment for chronic myelogenous leukemia (CML). Off-target kinase inhibition has been implicated in the appearance of unique adverse effects, such as colitis and pleural effusions. In addition, some patients present oligoclonal expansions of large granular lymphocytes (LGLs). We sought to further investigate this phenomenon in 64 patients treated with five different TKIs. Clonal expansions of cytotoxic T lymphocytes (CTLs) were identified in all TKI-treated patient groups, but only in dasatinib-treated patients were these expansions characterized as LGLs. Survival factors known to be important in LGL leukemia (interleukin-15 [IL-15] transpresentation, plasma platelet-derived growth factor [PDGF]-BB levels, nuclear factor-κB [NF-κB] and T-bet activation) were found to be associated with TKI-induced LGL expansions. Interestingly, patients with LGL expansions had increased cytotoxicity against non-transformed endothelial cells, which may play a role in observed autoimmune-like side effects. Our results indicate that patients with CML treated with TKIs can develop T cell expansions, which can in certain cases be related to some adverse effects.

Collaboration


Dive into the Jason A. Dubovsky's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Powers

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Eduardo M. Sotomayor

George Washington University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge