Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason A. Griggs is active.

Publication


Featured researches published by Jason A. Griggs.


Dental Materials | 2011

Flexural strength and failure modes of layered ceramic structures

M. Borba; Maico D. de Araújo; Erick de Lima; Humberto Naoyuki Yoshimura; Paulo Francisco Cesar; Jason A. Griggs; Alvaro Della Bona

OBJECTIVE To evaluate the effect of the specimen design on the flexural strength (σ(f)) and failure mode of ceramic structures, testing the hypothesis that the ceramic material under tension controls the mechanical performance of the structure. METHODS Three ceramics used as framework materials for fixed partial dentures (YZ--Vita In-Ceram YZ; IZ--Vita In-Ceram Zirconia; AL--Vita In-Ceram AL) and two veneering porcelains (VM7 and VM9) were studied. Bar-shaped specimens were produced in three different designs (n=10): monolithic, two layers (porcelain-framework) and three layers (TRI) (porcelain-framework-porcelain). Specimens were tested for three-point flexural strength at 1MPa/s in 37°C artificial saliva. For bi-layered design, the specimens were tested in both conditions: with porcelain (PT) or framework ceramic (FT) layer under tension. Fracture surfaces were analyzed using stereomicroscope and scanning electron microscopy (SEM). Youngs modulus (E) and Poissons ratio (ν) were determined using ultrasonic pulse-echo method. Results were statistically analyzed by Kruskal-Wallis and Student-Newman-Keuls tests. RESULTS Except for VM7 and VM9, significant differences were observed for E values among the materials. YZ showed the highest ν value followed by IZ and AL. YZ presented the highest σ(f). There was no statistical difference in the σ(f) value between IZ and IZ-FT and between AL and AL-FT. σ(f) values for YZ-PT, IZ-PT, IZ-TRI, AL-PT, AL-TRI were similar to the results obtained for VM7 and VM9. Two types of fracture mode were identified: total and partial failure. SIGNIFICANCE The mechanical performance of the specimens was determined by the material under tension during testing, confirming the study hypothesis.


Dental Materials | 2011

Adaptation of all-ceramic fixed partial dentures.

M. Borba; Paulo Francisco Cesar; Jason A. Griggs; Alvaro Della Bona

OBJECTIVES To measure the marginal and internal fit of three-unit fixed partial dentures (FPDs) using the micro-CT technique, testing the null hypothesis that there is no difference in the adaptation between the ceramic systems studied. METHODS Stainless steel models of prepared abutments were fabricated to design the FPDs. Ten FPDs were produced from each framework ceramic (YZ - Vita In-Ceram YZ and IZ - Vita In-Ceram Zirconia) using CEREC inLab according to the manufacturer instructions. All FPDs were veneered using the recommended porcelain. Each FPD was seated on the original model and scanned using micro-CT. Files were processed using NRecon and CTAn software. Adobe Photoshop and Image J software were used to analyze the cross-sections images. Five measuring locations were used as follows: MG - marginal gap; CA - chamfer area; AW - axial wall; AOT - axio-occlusal transition area; OA - occlusal area. The horizontal marginal discrepancy (HMD) was evaluated in another set of images. Results were statistically analyzed using ANOVA and Tukey tests (α=0.05). RESULTS The mean values for MG, CA, AW, OA and HMD were significantly different for all tested groups (p<0.05). IZ exhibited greater mean values than YZ for all measuring locations except for AW and AOT. OA showed the greatest mean gap values for both ceramic systems. MG and AW mean gap values were low for both systems. SIGNIFICANCE The ceramic systems evaluated showed different levels of marginal and internal fit, rejecting the study hypothesis. Yet, both ceramic systems showed clinically acceptable marginal and internal fit.


Dental Materials | 2011

Effect of the microstructure on the lifetime of dental ceramics

M. Borba; Maico D. de Araújo; K.A. Fukushima; Humberto Naoyuki Yoshimura; Paulo Francisco Cesar; Jason A. Griggs; Alvaro Della Bona

OBJECTIVES To evaluate the effect of the microstructure on the Weibull and slow crack growth (SCG) parameters and on the lifetime of three ceramics used as framework materials for fixed partial dentures (FPDs) (YZ - Vita In-Ceram YZ; IZ - Vita In-Ceram Zirconia; AL - Vita In-Ceram AL) and of two veneering porcelains (VM7 and VM9). METHODS Bar-shaped specimens were fabricated according to the manufacturers instructions. Specimens were tested in three-point flexure in 37°C artificial saliva. Weibull analysis (n=30) and a constant stress-rate test (n=10) were used to determine the Weibull modulus (m) and SCG coefficient (n), respectively. Microstructural and fractographic analyzes were performed using SEM. ANOVA and Tukeys test (α=0.05) were used to statistically analyze data obtained with both microstructural and fractographic analyzes. RESULTS YZ and AL presented high crystalline content and low porosity (0.1-0.2%). YZ had the highest characteristic strength (σ(0)) value (911MPa) followed by AL (488MPa) and IZ (423MPa). Lower σ(0) values were observed for the porcelains (68-75MPa). Except for IZ and VM7, m values were similar among the ceramic materials. Higher n values were found for YZ (76) and AL (72), followed by IZ (54) and the veneering materials (36-44). Lifetime predictions showed that YZ was the material with the best mechanical performance. The size of the critical flaw was similar among the framework materials (34-48μm) and among the porcelains (75-86μm). SIGNIFICANCE The microstructure influenced the mechanical and SCG behavior of the studied materials and, consequently, the lifetime predictions.


Operative Dentistry | 2006

Immediate bonding to bleached enamel.

A. K. Nour El-din; Barbara H. Miller; Jason A. Griggs; C. Wakefield

This research sought to determine the shear bond strength, degree of resin infiltration and failure mode when organic solvent-based adhesives (acetone or ethanol) were used in immediate bonding to enamel bleached with 10% carbamide peroxide or 38% hydrogen peroxide systems. Seventy-two non-carious bovine incisors were randomly assigned to three groups of 24 specimens each-control group (deionized water), 38% hydrogen peroxide bleach group and 10% carbamide peroxide bleach group. Each group was further subdivided into two subgroups of 12 specimens each according to the adhesive system used to bond the resin composite to enamel surfaces. The two adhesive systems used were Single Bond, an ethanol-based adhesive, and One Step, an acetone-based adhesive. The shear bond strengths of 38% hydrogen peroxide and 10% carbamide peroxide were significantly lower compared to the non-bleached controls. Fractography revealed an adhesive failure mode in all specimens. Qualitative comparisons of resin tags present in the bleached and unbleached specimens using scanning electron microscopy (SEM) revealed few, thin and fragmented resin tags when 38% hydrogen peroxide and 10% carbamide peroxide were used.


Biomaterials | 2001

Bond strength of binary titanium alloys to porcelain

Masanobu Yoda; Tatsuhiko Konno; Yukyo Takada; Kazunori Iijima; Jason A. Griggs; Osamu Okuno; Kohei Kimura; Toru Okabe

The purpose of this study was to investigate the bond strength between porcelain and experimental cast titanium alloys. Eleven binary titanium alloys were examined: Ti-Cr (15, 20, 25 wt%), Ti-Pd (15, 20, 25 wt%), Ti-Ag (10, 15, 20 wt%), and Ti-Cu (5, 10 wt%). As controls, the bond strengths for commercially pure titanium (KS-50, Kobelco, Japan) and a high noble gold alloy (KIK, Ishifuku, Japan) were also examined. Castings were made using a centrifugal casting unit (Ticast Super R, Selec Co., Japan). Commercial porcelain for titanium (TITAN, Noritake, Japan) was applied to cast specimens. The bond strengths were evaluated using a three-point bend test according to ISO 9693. Since the elastic modulus value is needed to evaluate the bond strength, the modulus was measured for each alloy using a three-point bend test. Results were analyzed using one-way ANOVA/S-N-K test (alpha = 0.05). Although the elastic moduli of the Ti-Pd alloys were significantly lower than those of other alloys (p = 0.0001), there was a significant difference in bond strength only between the Ti-25Pd and Ti-15Ag alloys (p = 0.009). The strengths determined for all the experimental alloys ranged from 29.4 to 37.2MPa, which are above the minimum value required by the ISO specification (25 MPa).


Journal of Dentistry | 2013

Three-dimensional finite element modelling of all-ceramic restorations based on micro-CT

Alvaro Della Bona; M. Borba; Paula Benetti; Yuanyuan Duan; Jason A. Griggs

OBJECTIVES To describe and apply a method of modelling dental crowns and three-unit fixed partial dentures (FPD) for finite element analyses (FEA) from 3D images obtained using a micro-CT scanner. METHODS A crown and a three-unit fixed partial denture (FPD) made of a ceramic framework (Y-TZP) and veneered with porcelain (VM9) were scanned using an X-ray micro-CT scanner with a pixel size of 6.97 μm. Slice images from both structures were generated at each 0.034 mm and processed by an interactive image control system (Mimics). Different masks of abutments, framework and veneer were extracted using thresholding and region growing tools based on X-ray image brightness and contrast. 3D objects of each model were incorporated into non-manifold assembly and meshed simultaneously. Volume meshes were exported to the FEA software (ABAQUS), and the load-generated stress distribution was analyzed. RESULTS FEA models showed great shape resemblance with the structures. The use of non-manifold assembly ensured matching surfaces and coinciding nodes between different structural parts. For the crown model, tensile stresses were concentrated in the internal surface of the core, near to the applied load. For the FPD model, the highest tensile stresses were located in the framework, on the cervical area of connectors and pontic. CONCLUSIONS Valid 3D models of dental crown and FPD can be generated by combining micro-CT scanning and Mimics software, emphasizing its importance as design tool in dental research. CLINICAL SIGNIFICANCE The 3D FEA method described in this work is an important tool to predict the stress distribution, assisting on structural design of dental restorations.


Journal of Prosthetic Dentistry | 2003

Effects of bur abrasive particle size and abutment composition on preparation of ceramic implant abutments

Daniel S Blue; Jason A. Griggs; Ronald D. Woody; Barbara H. Miller

STATEMENT OF PROBLEM Amid increasing use of preparable ceramic implant abutments, there is a lack of quantitative data to show which abrasive particle size of diamond bur yields the fastest reduction and provides the smoothest surface. PURPOSE The research aim was to determine the effects of diamond bur abrasive particle size and abutment material composition on preparation efficiency, prepared surface roughness, and surface deterioration of diamond burs. MATERIAL AND METHODS Fifteen alumina (Cera Base) and 15 zirconia (ZiReal) implant abutments were each machined using a high-speed hand piece with a diamond bur having 1 of 3 abrasive particle sizes (150, 100, or 30 microm) (n=5). Control abutments (n=5) were analyzed without machining. Abutments were weighed before starting and between machining cycles. Three profilometry measurements (root mean square surface roughness) were made for each abutment. Scanning electron micrographs were made of each bur. Lost abrasive particles were then counted on each micrograph through a randomly placed template. Two-way analysis of variance (alpha=0.05) was used to test for significant effects. RESULTS Bur abrasive particle size and ceramic type had a significant interactive effect on the amount of material removed (P<.001). Super coarse (150 microm) burs yielded the roughest surfaces for each abutment material (P<.001), and prepared alumina surfaces were rougher than zirconia surfaces (P<.001). Super coarse burs showed the highest proportion of lost particles (P<.001). Abutment composition did not significantly affect bur wear. CONCLUSION Super coarse burs yielded the most efficient material removal for alumina abutments. All abrasive particle sizes removed a similar amount of material from zirconia abutments. Fine-grained alumina abutments experienced greater material removal and rougher prepared surfaces compared with zirconia abutments. Material was removed by an intergranular fracture mechanism for alumina abutments, in contrast to transgranular fracture for zirconia abutments.


Journal of Dentistry | 2015

Effect of elasticity on stress distribution in CAD/CAM dental crowns: Glass ceramic vs. polymer–matrix composite

Yuanyuan Duan; Jason A. Griggs

OBJECTIVES Further investigations are required to evaluate the mechanical behaviour of newly developed polymer-matrix composite (PMC) blocks for computer-aided design/computer-aided manufacturing (CAD/CAM) applications. The purpose of this study was to investigate the effect of elasticity on the stress distribution in dental crowns made of glass-ceramic and PMC materials using finite element (FE) analysis. METHODS Elastic constants of two materials were determined by ultrasonic pulse velocity using an acoustic thickness gauge. Three-dimensional solid models of a full-coverage dental crown on a first mandibular molar were generated based on X-ray micro-CT scanning images. A variety of load case-material property combinations were simulated and conducted using FE analysis. The first principal stress distribution in the crown and luting agent was plotted and analyzed. RESULTS The glass-ceramic crown had stress concentrations on the occlusal surface surrounding the area of loading and the cemented surface underneath the area of loading, while the PMC crown had only stress concentration on the occlusal surface. The PMC crown had lower maximum stress than the glass-ceramic crown in all load cases, but this difference was not substantial when the loading had a lateral component. Eccentric loading did not substantially increase the maximum stress in the prosthesis. CONCLUSIONS Both materials are resistant to fracture with physiological occlusal load. The PMC crown had lower maximum stress than the glass-ceramic crown, but the effect of a lateral loading component was more pronounced for a PMC crown than for a glass-ceramic crown. CLINICAL SIGNIFICANCE Knowledge of the stress distribution in dental crowns with low modulus of elasticity will aid clinicians in planning treatments that include such restorations.


Journal of Biomedical Materials Research Part B | 2013

Fatigue testing of electron beam-melted Ti-6Al-4V ELI alloy for dental implants†

Gaurav V. Joshi; Yuanyuan Duan; John Neidigh; Mari Koike; Gilbert Chahine; Radovan Kovacevic; Toru Okabe; Jason A. Griggs

Customized one-component dental implants have been fabricated using Electron Beam Melting(®) (EBM(®)), which is a rapid prototyping and manufacturing technique. The goal of our study was to determine the effect of electron beam orientation on the fatigue resistance of EBM Ti-6Al-4V ELI alloy. EBM technique was used to fabricate Ti-6Al-4V ELI alloy blocks, which were cut into rectangular beam specimens with dimensions of 25 × 4 × 3 mm, such that electron beam orientation was either parallel (group A) or perpendicular (group B) to the long axis of the specimens. The specimens were subjected to cyclic fatigue (R = 0.1) in four-point flexure under ambient conditions using various stress amplitudes below the yield stress. The fatigue lifetime data were fit to an inverse power law-Weibull model to predict the peak stress corresponding to failure probabilities of 5 and 63% at 2M cycles (σ(max, 5%) and σ(max, 63%)). Groups A and B did not have significantly different Weibull modulus, m (p > 0.05). The specimens with parallel orientation showed significantly higher σ(max, 63%) (p ≤ 0.05), but there was no significant difference in the σ(max, 5%) (p > 0.05). Thus, it can be concluded that the fatigue resistance of the material was greatest when the electron beam orientation was perpendicular to the direction of crack propagation.


Dental Materials | 2013

Step-stress analysis for predicting dental ceramic reliability

M. Borba; Paulo Francisco Cesar; Jason A. Griggs; Alvaro Della Bona

OBJECTIVE To test the hypothesis that step-stress analysis is effective to predict the reliability of an alumina-based dental ceramic (VITA In-Ceram AL blocks) subjected to a mechanical aging test. METHODS Bar-shaped ceramic specimens were fabricated, polished to 1μm finish and divided into 3 groups (n=10): (1) step-stress accelerating test; (2) flexural strength-control; (3) flexural strength-mechanical aging. Specimens from group 1 were tested in an electromagnetic actuator (MTS Evolution) using a three-point flexure fixture (frequency: 2Hz; R=0.1) in 37°C water bath. Each specimen was subjected to an individual stress profile, and the number of cycles to failure was recorded. A cumulative damage model with an inverse power law lifetime-stress relation and Weibull lifetime distribution were used to fit the fatigue data. The data were used to predict the stress level and number of cycles for mechanical aging (group 3). Groups 2 and 3 were tested for three-point flexural strength (σ) in a universal testing machine with 1.0MPa/s stress rate, in 37°C water. Data were statistically analyzed using Mann-Whitney Rank Sum test. RESULTS Step-stress data analysis showed that the profile most likely to weaken the specimens without causing fracture during aging (95% CI: 0-14% failures) was: 80MPa stress amplitude and 10(5) cycles. The median σ values (MPa) for groups 2 (493±54) and 3 (423±103) were statistically different (p=0.009). SIGNIFICANCE The aging profile determined by step-stress analysis was effective to reduce alumina ceramic strength as predicted by the reliability estimate, confirming the study hypothesis.

Collaboration


Dive into the Jason A. Griggs's collaboration.

Top Co-Authors

Avatar

M. Borba

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Yuanyuan Duan

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

Alvaro Della Bona

Universidade de Passo Fundo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M.D. Roach

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

A. Della Bona

Universidade de Passo Fundo

View shared research outputs
Top Co-Authors

Avatar

R.S. Williamson

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

Rafael R. Moraes

Universidade Federal de Pelotas

View shared research outputs
Top Co-Authors

Avatar

Gaurav V. Joshi

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge