Jason A. Hackney
Genentech
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jason A. Hackney.
Nature Immunology | 2011
Vladimir Ramirez-Carrozzi; Arivazhagan Sambandam; Elizabeth Luis; Zhongua Lin; Surinder Jeet; Justin Lesch; Jason A. Hackney; Janice Kim; Meijuan Zhou; Joyce Lai; Zora Modrusan; Tao Sai; Wyne P. Lee; Min Xu; Patrick Caplazi; Lauri Diehl; Jason de Voss; Mercedesz Balazs; Lino C. Gonzalez; Harinder Singh; Wenjun Ouyang; Rajita Pappu
Interleukin 17C (IL-17C) is a member of the IL-17 family that is selectively induced in epithelia by bacterial challenge and inflammatory stimuli. Here we show that IL-17C functioned in a unique autocrine manner, binding to a receptor complex consisting of the receptors IL-17RA and IL-17RE, which was preferentially expressed on tissue epithelial cells. IL-17C stimulated epithelial inflammatory responses, including the expression of proinflammatory cytokines, chemokines and antimicrobial peptides, which were similar to those induced by IL-17A and IL-17F. However, IL-17C was produced by distinct cellular sources, such as epithelial cells, in contrast to IL-17A, which was produced mainly by leukocytes, especially those of the TH17 subset of helper T cells. Whereas IL-17C promoted inflammation in an imiquimod-induced skin-inflammation model, it exerted protective functions in dextran sodium sulfate–induced colitis. Thus, IL-17C is an essential autocrine cytokine that regulates innate epithelial immune responses.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Jason A. Hackney; Pierre Charbord; Brian P. Brunk; Christian J. Stoeckert; Ihor R. Lemischka; Kateri Moore
The hematopoietic microenvironment provides a complex molecular milieu that regulates the self-renewal and differentiation activities of stem cells. We have characterized a stem cell supportive stromal cell line, AFT024, that was derived from murine fetal liver. Highly purified in vivo transplantable mouse stem cells are maintained in AFT024 cultures at input levels, whereas other primitive progenitors are expanded. In addition, human stem cells are very effectively supported by AFT024. We suggest that the AFT024 cell line represents a component of an in vivo stem cell niche. To determine the molecular signals elaborated in this niche, we undertook a functional genomics approach that combines extensive sequence mining of a subtracted cDNA library, high-density array hybridization and in-depth bioinformatic analyses. The data have been assembled into a biological process oriented database, and represent a molecular profile of a candidate stem cell niche.
Science | 2012
Elke Glasmacher; Smita Agrawal; Abraham B. Chang; Theresa L. Murphy; Wenwen Zeng; Bryan Vander Lugt; Aly A. Khan; Maria Ciofani; Chauncey J. Spooner; Sascha Rutz; Jason A. Hackney; Roza Nurieva; Carlos R. Escalante; Wenjun Ouyang; Dan R. Littman; Kenneth M. Murphy; Harinder Singh
Helping T Helper Transcription Members of the interferon response family of transcription factors (IRFs) are specifically expressed in immune cells and are known to regulate their differentiation. IRF4 and IRF8 regulate gene expression by binding to other transcription factors, which results in their recruitment to composite motifs in the genome. Although the specific mechanism of how this regulation works in some immune cells is understood, how it occurs in T cells is not clear because the transcription factors that normally partner with IRFs are absent. Using genomic analysis, Glasmacher et al. (p. 975, published online 13 September; see the Perspective by Martinez and Rao) now identify IRF4–AP-1 composite elements in T helper 17 (TH17) cells and show that IRF4 and the AP-1 factor Batf cooperatively assemble on a large array of genes required for TH17 cell differentiation and function. Assembly of such heterodimers was also observed in TH2 cells, B cells, and dendritic cells, which suggests the general importance of this motif in immune cell differentiation. Cooperative binding of transcription factors to composite genomic elements regulates T helper 17 cell differentiation. Interferon regulatory factor 4 (IRF4) and IRF8 regulate B, T, macrophage, and dendritic cell differentiation. They are recruited to cis-regulatory Ets-IRF composite elements by PU.1 or Spi-B. How these IRFs target genes in most T cells is enigmatic given the absence of specific Ets partners. Chromatin immunoprecipitation sequencing in T helper 17 (TH17) cells reveals that IRF4 targets sequences enriched for activating protein 1 (AP-1)–IRF composite elements (AICEs) that are co-bound by BATF, an AP-1 factor required for TH17, B, and dendritic cell differentiation. IRF4 and BATF bind cooperatively to structurally divergent AICEs to promote gene activation and TH17 differentiation. The AICE motif directs assembly of IRF4 or IRF8 with BATF heterodimers and is also used in TH2, B, and dendritic cells. This genomic regulatory element and cognate factors appear to have evolved to integrate diverse immunomodulatory signals.
Nature Genetics | 2016
Raphael Bueno; Eric Stawiski; Leonard D. Goldstein; Steffen Durinck; Assunta De Rienzo; Zora Modrusan; Florian Gnad; Thong T. Nguyen; Bijay S. Jaiswal; Lucian R. Chirieac; Daniele Sciaranghella; Nhien Dao; Corinne E. Gustafson; Kiara J. Munir; Jason A. Hackney; Amitabha Chaudhuri; Ravi Gupta; Joseph Guillory; Karen Toy; Connie Ha; Ying-Jiun Chen; Jeremy Stinson; Subhra Chaudhuri; Na Zhang; Thomas D. Wu; David J. Sugarbaker; Frederic J. de Sauvage; William G. Richards; Somasekar Seshagiri
We analyzed transcriptomes (n = 211), whole exomes (n = 99) and targeted exomes (n = 103) from 216 malignant pleural mesothelioma (MPM) tumors. Using RNA-seq data, we identified four distinct molecular subtypes: sarcomatoid, epithelioid, biphasic-epithelioid (biphasic-E) and biphasic-sarcomatoid (biphasic-S). Through exome analysis, we found BAP1, NF2, TP53, SETD2, DDX3X, ULK2, RYR2, CFAP45, SETDB1 and DDX51 to be significantly mutated (q-score ≥ 0.8) in MPMs. We identified recurrent mutations in several genes, including SF3B1 (∼2%; 4/216) and TRAF7 (∼2%; 5/216). SF3B1-mutant samples showed a splicing profile distinct from that of wild-type tumors. TRAF7 alterations occurred primarily in the WD40 domain and were, except in one case, mutually exclusive with NF2 alterations. We found recurrent gene fusions and splice alterations to be frequent mechanisms for inactivation of NF2, BAP1 and SETD2. Through integrated analyses, we identified alterations in Hippo, mTOR, histone methylation, RNA helicase and p53 signaling pathways in MPMs.
Nature Immunology | 2014
Bryan Vander Lugt; Aly A. Khan; Jason A. Hackney; Smita Agrawal; Justin Lesch; Meijuan Zhou; Wyne P. Lee; Summer Park; Min Xu; Jason DeVoss; Chauncey J. Spooner; Cecile Chalouni; Lélia Delamarre; Ira Mellman; Harinder Singh
CD11b+ dendritic cells (DCs) seem to be specialized for presenting antigens via major histocompatibility (MHC) class II complexes to stimulate helper T cells, but the genetic and regulatory basis for this is not established. Conditional deletion of Irf4 resulted in loss of CD11b+ DCs, impaired formation of peptide–MHC class II complexes and defective priming of helper T cells but not of cytotoxic T lymphocyte (CTL) responses. Gene expression and chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) analyses delineated an IRF4-dependent regulatory module that programs enhanced MHC class II antigen presentation. Expression of the transcription factor IRF4 but not of IRF8 restored the ability of IRF4-deficient DCs to efficiently process and present antigen to MHC class II–restricted T cells and promote helper T cell responses. We propose that the evolutionary divergence of IRF4 and IRF8 facilitated the specialization of DC subsets for distinct modes of antigen presentation and priming of helper T cell versus CTL responses.
Nature Immunology | 2011
Sascha Rutz; Rajkumar Noubade; Céline Eidenschenk; Naruhisa Ota; Wenwen Zeng; Yan Zheng; Jason A. Hackney; Jiabing Ding; Harinder Singh; Wenjun Ouyang
Interleukin 22 (IL-22), which is produced by cells of the TH17 subset of helper T cells and other leukocytes, not only enhances proinflammatory innate defense mechanisms in epithelial cells but also provides crucial protection to tissues from damage caused by inflammation and infection. In TH17 cells, transforming growth factor-β (TGF-β) regulates IL-22 and IL-17 differently. IL-6 alone induces T cells to produce only IL-22, whereas the combination of IL-6 and high concentrations of TGF-β results in the production of IL-17 but not IL-22 by T cells. Here we identify the transcription factor c-Maf, which is induced by TGF-β, as a downstream repressor of Il22. We found that c-Maf bound to the Il22 promoter and was both necessary and sufficient for the TGF-β-dependent suppression of IL-22 production in TH17 cells.
Arthritis Research & Therapy | 2014
Glynn Dennis; Cecile Holweg; Sarah K. Kummerfeld; David F. Choy; Alvernia Francesca Setiadi; Jason A. Hackney; Peter M. Haverty; Houston Gilbert; Wei Y. Lin; Lauri Diehl; Saloumeh Kadkhodayan Fischer; An Song; David Musselman; Micki Klearman; Cem Gabay; Arthur Kavanaugh; Judith Endres; David A. Fox; Flavius Martin; Michael J. Townsend
IntroductionRheumatoid arthritis (RA) is a complex and clinically heterogeneous autoimmune disease. Currently, the relationship between pathogenic molecular drivers of disease in RA and therapeutic response is poorly understood.MethodsWe analyzed synovial tissue samples from two RA cohorts of 49 and 20 patients using a combination of global gene expression, histologic and cellular analyses, and analysis of gene expression data from two further publicly available RA cohorts. To identify candidate serum biomarkers that correspond to differential synovial biology and clinical response to targeted therapies, we performed pre-treatment biomarker analysis compared with therapeutic outcome at week 24 in serum samples from 198 patients from the ADACTA (ADalimumab ACTemrA) phase 4 trial of tocilizumab (anti-IL-6R) monotherapy versus adalimumab (anti-TNFα) monotherapy.ResultsWe documented evidence for four major phenotypes of RA synovium – lymphoid, myeloid, low inflammatory, and fibroid - each with distinct underlying gene expression signatures. We observed that baseline synovial myeloid, but not lymphoid, gene signature expression was higher in patients with good compared with poor European league against rheumatism (EULAR) clinical response to anti-TNFα therapy at week 16 (P =0.011). We observed that high baseline serum soluble intercellular adhesion molecule 1 (sICAM1), associated with the myeloid phenotype, and high serum C-X-C motif chemokine 13 (CXCL13), associated with the lymphoid phenotype, had differential relationships with clinical response to anti-TNFα compared with anti-IL6R treatment. sICAM1-high/CXCL13-low patients showed the highest week 24 American College of Rheumatology (ACR) 50 response rate to anti-TNFα treatment as compared with sICAM1-low/CXCL13-high patients (42% versus 13%, respectively, P =0.05) while anti-IL-6R patients showed the opposite relationship with these biomarker subgroups (ACR50 20% versus 69%, P =0.004).ConclusionsThese data demonstrate that underlying molecular and cellular heterogeneity in RA impacts clinical outcome to therapies targeting different biological pathways, with patients with the myeloid phenotype exhibiting the most robust response to anti-TNFα. These data suggest a path to identify and validate serum biomarkers that predict response to targeted therapies in rheumatoid arthritis and possibly other autoimmune diseases.Trial registrationClinicalTrials.gov NCT01119859
Cellular Microbiology | 2007
Gretchen M. Ehrenkaufer; Rashidul Haque; Jason A. Hackney; Daniel Eichinger; Upinder Singh
Developmental switching between life‐cycle stages is a common feature among many pathogenic organisms. The protozoan parasite Entamoeba histolytica converts between cysts (essential for disease transmission) and trophozoites (responsible for tissue invasion). Identification of genes involved in the developmental pathway has been severely hindered by the inability to generate E. histolytica cysts in vitro. Using parasite strains derived from recent human infections and whole‐genome transcriptional profiling, we determined that 1439 genes (∼15% of annotated genes) were potentially developmentally regulated. Genes enriched in cysts (672 in total) included cysteine proteinases and transmembrane protein kinases, which may be involved in signal transduction. Genes enriched in trophozoites (767 in total) included genes typically thought of as important in tissue invasion by trophozoites, including the Gal/GalNAc lectin light subunit and cysteine protease 1. Putative regulators of differentiation including possible G‐protein coupled receptors, signal transduction proteins and transcription factors were identified. A number of E. histolytica stage‐specific genes were also developmentally regulated in the reptilian parasite E. invadens, indicating that they likely have conserved functions in Entamoeba development. These advances lay the groundwork for dissection of the molecular signals that initiate stage conversion and development of novel diagnostic and therapeutic measures targeting E. histolytica cysts.
Nature | 2014
Rajkumar Noubade; Kit Wong; Naruhisa Ota; Sascha Rutz; Céline Eidenschenk; Patricia Valdez; Jiabing Ding; Ivan Peng; Andrew Sebrell; Patrick Caplazi; Jason DeVoss; Robert Soriano; Tao Sai; Rongze Lu; Zora Modrusan; Jason A. Hackney; Wenjun Ouyang
Reactive oxygen species (ROS) produced by phagocytes are essential for host defence against bacterial and fungal infections. Individuals with defective ROS production machinery develop chronic granulomatous disease. Conversely, excessive ROS can cause collateral tissue damage during inflammatory processes and therefore needs to be tightly regulated. Here we describe a protein, we termed negative regulator of ROS (NRROS), which limits ROS generation by phagocytes during inflammatory responses. NRROS expression in phagocytes can be repressed by inflammatory signals. NRROS-deficient phagocytes produce increased ROS upon inflammatory challenges, and mice lacking NRROS in their phagocytes show enhanced bactericidal activity against Escherichia coli and Listeria monocytogenes. Conversely, these mice develop severe experimental autoimmune encephalomyelitis owing to oxidative tissue damage in the central nervous system. Mechanistically, NRROS is localized to the endoplasmic reticulum, where it directly interacts with nascent NOX2 (also known as gp91phox and encoded by Cybb) monomer, one of the membrane-bound subunits of the NADPH oxidase complex, and facilitates the degradation of NOX2 through the endoplasmic-reticulum-associated degradation pathway. Thus, NRROS provides a hitherto undefined mechanism for regulating ROS prodution—one that enables phagocytes to produce higher amounts of ROS, if required to control invading pathogens, while minimizing unwanted collateral tissue damage.
PLOS ONE | 2011
Svetlana Pidasheva; Sara Trifari; Anne Phillips; Jason A. Hackney; Yan Ma; Ashley Smith; Sue J. Sohn; Hergen Spits; Randall David Little; Timothy W. Behrens; Lee Honigberg; Nico Ghilardi; Hilary Clark
Genome-wide association studies (GWAS) in several populations have demonstrated significant association of the IL23R gene with IBD (Crohns disease (CD) and ulcerative colitis (UC)) and psoriasis, suggesting that perturbation of the IL-23 signaling pathway is relevant to the pathophysiology of these diseases. One particular variant, R381Q (rs11209026), confers strong protection against development of CD. We investigated the effects of this variant in primary T cells from healthy donors carrying IL23RR381 and IL23RQ381 haplotypes. Using a proprietary anti-IL23R antibody, ELISA, flow cytometry, phosphoflow and real-time RT-PCR methods, we examined IL23R expression and STAT3 phosphorylation and activation in response to IL-23. IL23RQ381 was associated with reduced STAT3 phosphorylation upon stimulation with IL-23 and decreased number of IL-23 responsive T-cells. We also observed slightly reduced levels of proinflammatory cytokine secretion in IL23RQ381 positive donors. Our study shows conclusively that IL23RQ381 is a loss-of-function allele, further strengthening the implication from GWAS results that the IL-23 pathway is pathogenic in human disease. This data provides an explanation for the protective role of R381Q in CD and may lead to the development of improved therapeutics for autoimmune disorders like CD.