Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason A. Hubbart is active.

Publication


Featured researches published by Jason A. Hubbart.


Science of The Total Environment | 2016

A comparison of the spatial distribution of vadose zone water in forested and agricultural floodplains a century after harvest

Elliott Kellner; Jason A. Hubbart

To improve quantitative understanding of the long-term impact of historic forest removal on floodplain vadose zone water regime, a study was implemented in fall 2010, in the Hinkson Creek Watershed, Missouri, USA. Automated, continuously logging capacitance-frequency probes were installed in a grid-like formation (n=6) and at depths of 15, 30, 50, 75, and 100 cm within a historic agricultural field (Ag) and a remnant bottomland hardwood forest (BHF). Data were logged at thirty minute intervals for the duration of the 2011, 2012, and 2013 hydrologic years. Results showed volumetric water content (VWC) to be significantly different between sites (p<0.01) during the study, with site averages of 33.1 and 32.8% at the Ag and BHF sites, respectively. Semi-variogram analyses indicate the presence of strong (<25%) horizontal and vertical spatial correlation of VWC at the Ag site, and a relatively short-range (25 cm) vertical spatial correlation at the BHF, but only indicate horizontal VWC spatial correlation in the top 30 cm of the BHF profile. Likely mechanisms contributing to patterns of observed differences are contrasting rates and depths of plant water use, and the presence of preferential flow paths in the below ground BHF. Results suggest historic forest removal and cultivation of the Ag site lead to an effective homogenization of the upper soil profile, and facilitated the development of strong VWC spatial dependency. Conversely, higher hydraulic conductivity of the more heterogeneous BHF subsurface likely results in a wetting of the deeper profile (75 cm) during climatically wet periods, and thus a more effective processing of hydrologic inputs. Collective results highlight the greater extent and degree to which forest vegetation impacts subsurface hydrology, relative to grassland/agricultural systems, and point to the value of reestablishing floodplain forests for fresh water routing, water quality, and flood mitigation in mixed-land-use watersheds.


Science of The Total Environment | 2016

Quantifying suspended sediment flux in a mixed-land-use urbanizing watershed using a nested-scale study design.

Sean Zeiger; Jason A. Hubbart

Suspended sediment (SS) remains the most pervasive water quality problem globally and yet, despite progress, SS process understanding remains relatively poor in watersheds with mixed-land-use practices. The main objective of the current work was to investigate relationships between suspended sediment and land use types at multiple spatial scales (n=5) using four years of suspended sediment data collected in a representative urbanized mixed-land-use (forest, agriculture, urban) watershed. Water samples were analyzed for SS using a nested-scale experimental watershed study design (n=836 samples×5 gauging sites). Kruskal-Wallis and Dunns post-hoc multiple comparison tests were used to test for significant differences (CI=95%, p<0.05) in SS levels between gauging sites. Climate extremes (high precipitation/drought) were observed during the study period. Annual maximum SS concentrations exceeded 2387.6 mg/L. Median SS concentrations decreased by 60% from the agricultural headwaters to the rural/urban interface, and increased by 98% as urban land use increased. Multiple linear regression analysis results showed significant relationships between SS, annual total precipitation (positive correlate), forested land use (negative correlate), agricultural land use (negative correlate), and urban land use (negative correlate). Estimated annual SS yields ranged from 16.1 to 313.0 t km(-2) year(-1) mainly due to differences in annual total precipitation. Results highlight the need for additional studies, and point to the need for improved best management practices designed to reduce anthropogenic SS loading in mixed-land-use watersheds.


Science of The Total Environment | 2016

A SWAT model validation of nested-scale contemporaneous stream flow, suspended sediment and nutrients from a multiple-land-use watershed of the central USA

Sean Zeiger; Jason A. Hubbart

There is an ongoing need to validate the accuracy of predictive model simulated pollutant yields, particularly from multiple-land-use (i.e. forested, agricultural, and urban) watersheds. However, there are seldom sufficient observed data sets available that supply requisite spatial and temporal resolution and coupled multi-parameter constituents for rigorous model performance assessment. Four years of hydroclimate and water quality data were used to validate SWAT model estimates of monthly stream flow, suspended sediment, total phosphorus, nitrate, nitrite, ammonium, and total inorganic nitrogen from 5 nested-scale gauging sites located in a multiple-land-use watershed of the central USA. The uncalibrated SWAT model satisfactorily simulated monthly stream flow with Nash-Sutcliffe efficiency (NSE) values ranging from 0.50 near the headwaters, to 0.75 near the watershed outlet. However, the uncalibrated model did not accurately simulate monthly sediment, total phosphorus, nitrate, nitrite, ammonium, and total inorganic nitrogen with NSE values<0.05. Calibrating the SWAT model to multiple gauging sites within the watershed improved estimates of monthly stream flow (NSE=0.83), sediment (NSE=0.78), total phosphorus (NSE=0.81), nitrate (NSE=0.90), and total inorganic nitrogen (NSE=0.86). However, NSE values were <-0.16 for nitrite and ammonium estimates. Additionally, model performance decreased for sediment, nitrate, and total inorganic nitrogen during the validation period with NSE values<0.62, 0.52, and 0.36, respectively. Results highlight the benefits of calibrating the SWAT model to multiple gauging sites and provide guidance to SWAT model (or similar models) users wishing to improve model performance at multiple scales.


Science of The Total Environment | 2016

More than Drought: Precipitation Variance, Excessive Wetness, Pathogens and the Future of the Western Edge of the Eastern Deciduous Forest

Jason A. Hubbart; Richard P. Guyette; Rose-Marie Muzika

For many regions of the Earth, anthropogenic climate change is expected to result in increasingly divergent climate extremes. However, little is known about how increasing climate variance may affect ecosystem productivity. Forest ecosystems may be particularly susceptible to this problem considering the complex organizational structure of specialized species niche adaptations. Forest decline is often attributable to multiple stressors including prolonged heat, wildfire and insect outbreaks. These disturbances, often categorized as megadisturbances, can push temperate forests beyond sustainability thresholds. Absent from much of the contemporary forest health literature, however, is the discussion of excessive precipitation that may affect other disturbances synergistically or that might represent a principal stressor. Here, specific points of evidence are provided including historic climatology, variance predictions from global change modeling, Midwestern paleo climate data, local climate influences on net ecosystem exchange and productivity, and pathogen influences on oak mortality. Data sources reveal potential trends, deserving further investigation, indicating that the western edge of the Eastern Deciduous forest may be impacted by ongoing increased precipitation, precipitation variance and excessive wetness. Data presented, in conjunction with recent regional forest health concerns, suggest that climate variance including drought and excessive wetness should be equally considered for forest ecosystem resilience against increasingly dynamic climate. This communication serves as an alert to the need for studies on potential impacts of increasing climate variance and excessive wetness in forest ecosystem health and productivity in the Midwest US and similar forest ecosystems globally.


Science of The Total Environment | 2016

Continuous and event-based time series analysis of observed floodplain groundwater flow under contrasting land-use types

Elliott Kellner; Jason A. Hubbart

There is an ongoing need to improve quantitative understanding of land-use impacts on floodplain groundwater flow regimes. A study was implemented in Hinkson Creek Watershed, Missouri, USA, including equidistant grids of nine piezometers, equipped with pressure transducers, which were installed at two floodplain study sites: a remnant bottomland hardwood forest (BHF) and a historical agricultural field (Ag). Data were logged at thirty minute intervals for the duration of the 2011, 2012, 2013, and 2014 water years (October 1, 2010-September 30, 2014). Results show significant (p<0.001) differences between Darcy-estimated groundwater flow at the two study sites. Although median flow values at the two sites were similar (0.009 and 0.010mday(-1) for the Ag and BHF sites, respectively), the BHF displayed a more dynamic flow regime compared to the Ag site. Maximum flow values were 0.020 and 0.049mday(-1) for the Ag and BHF sites, respectively. Minimum flow values were -0.018 and -0.029mday(-1) for the Ag and BHF sites, respectively. The BHF showed greater magnitude, longer duration, and more frequent negative flows, relative to the Ag site. Event-based analyses indicated a more seasonally responsive flow regime at the BHF, with higher flows than the Ag site during the wet season and lower flows than the Ag site during the dry season. Notably, the seasonal pattern of relative site flow differences was consistent across a wide range of precipitation event magnitudes (i.e. 8-45mm). Results are by majority attributable to greater rates of plant water use by woody vegetation and preferential subsurface flow at the BHF site. Collectively, results suggest greater flood attenuation capacity and streamwater buffering potential by the BHF floodplain, relative to the Ag, and highlight the value of floodplain forests as a land and water resource management tool.


Science of The Total Environment | 2017

Quantifying loading, toxic concentrations, and systemic persistence of chloride in a contemporary mixed-land-use watershed using an experimental watershed approach

Jason A. Hubbart; Elliott Kellner; Lynne Hooper; Sean Zeiger

A nested-scale experimental watershed study was implemented to quantify loading and persistence of chloride in an urbanizing, mixed-land-use watershed. A Midwest USA (Missouri) watershed was partitioned into five sub-basins with contrasting dominant land use. Streamwater was tested for chloride concentration four days per week from October 2009 through May 2014 at each site. Monitoring sites included co-located gauging and climate stations recording variables at 30-minute intervals. Results indicate significant (p<0.01) differences in chloride concentrations and loading between sites. Loading consistently increased from the forested headwaters (average=507kgday-1) to primarily urban watershed terminus (average=7501kgday-1). Chloride concentrations were highest (average=83.9mgL-1) with the greatest frequency of acutely toxic conditions (i.e. 860mgL-1) mid-watershed. This finding is in-part attributable to the ratio of chloride application to streamflow volume (i.e. increasing flow volume with stream distance resulted in chloride dilution, offsetting increased percent urban land use with stream distance). Results highlight the important, yet often confounding, interactions between pollutant loading and flow dynamics. Chloride peaks occurred during late winter/early spring melting periods, implicating road salt application as the primary contributor to the chloride regime. Floodplain groundwater analysis indicated seasonal sink/source relationships between the stream and floodplain, which could contribute to chronic toxicity and persistent low Cl- concentrations in streamwater year-round. Results hold important implications for resource managers wishing to mitigate water quality and aquatic habitat degradation, and suggest important water quality limitations to stream restoration success in complex urban aquatic ecosystems.


Hydrological Processes | 2017

Integrating downscaled CMIP5 data with a physically‐based hydrologic model to estimate potential climate change impacts on streamflow processes in a mixed‐use watershed

Michael G. Sunde; Hong S. He; Jason A. Hubbart; Michael A. Urban

&NA; Climatic changes have altered surface water regimes worldwide, and climate projections suggest that such alterations will continue. To inform management decisions, climate projections must be paired with hydrologic models to develop quantitative estimates of watershed scale water regime changes. Such modeling approaches often involve downscaling climate model outputs, which are generally presented at coarse spatial scales. In this study, Coupled Model Intercomparison Project Phase 5 climate model projections were analyzed to determine models representing severe and conservative climate scenarios for the study watershed. Based on temperature and precipitation projections, output from GFDL‐ESM2G (representative concentration pathway 2.6) and MIROC‐ESM (representative concentration pathway 8.5) were selected to represent conservative (&Dgr;C) and severe (&Dgr;S) change scenarios, respectively. Climate data were used as forcing for the soil and water assessment tool to analyze the potential effects of climate change on hydrologic processes in a mixed‐use watershed in central Missouri, USA. Results showed annual streamflow decreases ranging from −5.9% to −26.8% and evapotranspiration (ET) increases ranging from +7.2% to +19.4%. During the mid‐21st century, sizeable decreases to summer streamflow were observed under both scenarios, along with large increases of fall, spring, and summer ET under &Dgr;S. During the late 21st century period, large decreases of summer streamflow under both scenarios, and large increases to spring (&Dgr;S), fall (&Dgr;S) and summer (&Dgr;C) ET were observed. This study demonstrated the sensitivity of a Midwestern watershed to future climatic changes utilizing projections from Coupled Model Intercomparison Project Phase 5 models and presented an approach that used multiple climate model outputs to characterize potential watershed scale climate impacts.


Pure and Applied Geophysics | 2017

Climatic Changes in the East-European Forest-Steppe and Effects on Scots Pine Productivity

S. M. Matveev; Yu. G. Chendev; Anthony R. Lupo; Jason A. Hubbart; D. A. Timashchuk

Climate change during the 20th and early 21st centuries in the transitional zone between forests and grasslands at the center of the East-European Plain (Voronezh oblast) was determined by examining climate trends and variability using tree ring radial increment data as representative of productivity. An increase in atmospheric moisture for the warm period of the year (May–September) since 1890s, and mean annual temperatures since the 1950s was identified. During the same time period, there was a marked increase in amplitude of the annual variations for temperature and precipitation. Study results revealed trends, variability in the climatic indices, and corresponding radial wood increment for the regional stands of Pinus sylvestris L. These fluctuations are consistent with 10–12-years Schwabe–Wolf, 22-years Hale, and the 32–36-years Bruckner Solar Cycles. There was an additional relationship found between high-frequency (short-period) climate fluctuations, lasting for about three years, and 70–90-years fluctuations of the moisture regime in the study region corresponding to longer cycles. The results of this study can help guide management decisions in the study region and elsewhere, especially where climate change induced alterations to the state and productivity of forest ecosystems and associated natural resource commodities are of growing concern.


Science of The Total Environment | 2017

Improving understanding of mixed-land-use watershed suspended sediment regimes: Mechanistic progress through high-frequency sampling

Elliott Kellner; Jason A. Hubbart

Given the importance of suspended sediment to biogeochemical functioning of aquatic ecosystems, and the increasing concern of mixed-land-use effects on pollutant loading, there is an urgent need for research that quantitatively characterizes spatiotemporal variation of suspended sediment dynamics in contemporary watersheds. A study was conducted in a representative watershed of the central United States utilizing a nested-scale experimental watershed design, including five gauging sites (n=5) partitioning the catchment into five sub-watersheds. Hydroclimate stations at gauging sites were used to monitor air temperature, precipitation, and stream stage at 30-min intervals during the study (Oct. 2009-Feb. 2014). Streamwater grab samples were collected four times per week, at each site, for the duration of the study (Oct. 2009-Feb. 2014). Water samples were analyzed for suspended sediment using laser particle diffraction. Results showed significant differences (p<0.05) between monitoring sites for total suspended sediment concentration, mean particle size, and silt volume. Total concentration and silt volume showed a decreasing trend from the primarily agricultural upper watershed to the urban mid-watershed, and a subsequent increasing trend to the more suburban lower watershed. Conversely, mean particle size showed an opposite spatial trend. Results are explained by a combination of land use (e.g. urban stormwater dilution) and surficial geology (e.g. supply-controlled spatial variation of particle size). Correlation analyses indicated weak relationships with both hydroclimate and land use, indicating non-linear sediment dynamics. Suspended sediment parameters displayed consistent seasonality during the study, with total concentration decreasing through the growing season and mean particle size inversely tracking air temperature. Likely explanations include vegetation influences and climate-driven weathering cycles. Results reflect unique observations of spatiotemporal variation of suspended sediment particle size class. Such information is crucial for land and water resource managers working to mitigate aquatic ecosystem degradation and improve water resource sustainability in mixed-land-use watersheds globally.


Hydrological Processes | 2017

Confounded by forgotten legacies: Effectively managing watersheds in the contemporary age of unknown unknowns

Elliott Kellner; Jason A. Hubbart

School of Natural Resources, University of Missouri, 203 ABNR Building, Columbia, MO 65211, USA 2 Institute of Water Security and Science, Davis College, Schools of Agriculture and Food, and Natural Resources, West Virginia University, 3107 Agricultural Sciences Building, Morgantown, WV 26506, USA Correspondence Elliott Kellner, School of Natural Resources, University of Missouri, 203 ABNR Building, Columbia, MO 65211, USA. Email: [email protected]

Collaboration


Dive into the Jason A. Hubbart's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sean Zeiger

University of Missouri

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Evan Kutta

West Virginia University

View shared research outputs
Top Co-Authors

Avatar

Hong S. He

University of Missouri

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donald G. Larson

California State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge