Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason A. Inzana is active.

Publication


Featured researches published by Jason A. Inzana.


Biomaterials | 2014

3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration.

Jason A. Inzana; Diana Olvera; Seth M. Fuller; James P. Kelly; Olivia A. Graeve; Edward M. Schwarz; Stephen L. Kates; Hani A. Awad

Low temperature 3D printing of calcium phosphate scaffolds holds great promise for fabricating synthetic bone graft substitutes with enhanced performance over traditional techniques. Many design parameters, such as the binder solution properties, have yet to be optimized to ensure maximal biocompatibility and osteoconductivity with sufficient mechanical properties. This study tailored the phosphoric acid-based binder solution concentration to 8.75 wt% to maximize cytocompatibility and mechanical strength, with a supplementation of Tween 80 to improve printing. To further enhance the formulation, collagen was dissolved into the binder solution to fabricate collagen-calcium phosphate composites. Reducing the viscosity and surface tension through a physiologic heat treatment and Tween 80, respectively, enabled reliable thermal inkjet printing of the collagen solutions. Supplementing the binder solution with 1-2 wt% collagen significantly improved maximum flexural strength and cell viability. To assess the bone healing performance, we implanted 3D printed scaffolds into a critically sized murine femoral defect for 9 weeks. The implants were confirmed to be osteoconductive, with new bone growth incorporating the degrading scaffold materials. In conclusion, this study demonstrates optimization of material parameters for 3D printed calcium phosphate scaffolds and enhancement of material properties by volumetric collagen incorporation via inkjet printing.


Annals of Biomedical Engineering | 2017

3D Printing of Calcium Phosphate Ceramics for Bone Tissue Engineering and Drug Delivery

Ryan Trombetta; Jason A. Inzana; Edward M. Schwarz; Stephen L. Kates; Hani A. Awad

Additive manufacturing, also known as 3D printing, has emerged over the past 3 decades as a disruptive technology for rapid prototyping and manufacturing. Vat polymerization, powder bed fusion, material extrusion, and binder jetting are distinct technologies of additive manufacturing, which have been used in a wide variety of fields, including biomedical research and tissue engineering. The ability to print biocompatible, patient-specific geometries with controlled macro- and micro-pores, and to incorporate cells, drugs and proteins has made 3D-printing ideal for orthopaedic applications, such as bone grafting. Herein, we performed a systematic review examining the fabrication of calcium phosphate (CaP) ceramics by 3D printing, their biocompatibility in vitro, and their bone regenerative potential in vivo, as well as their use in localized delivery of bioactive molecules or cells. Understanding the advantages and limitations of the different 3D printing approaches, CaP materials, and bioactive additives through critical evaluation of in vitro and in vivo evidence of efficacy is essential for developing new classes of bone graft substitutes that can perform as well as autografts and allografts or even surpass the performance of these clinical standards.


Arthritis & Rheumatism | 2012

Mechanisms of bone fragility in a mouse model of glucocorticoid-treated rheumatoid arthritis: Implications for insufficiency fracture risk

Masahiko Takahata; Jason R. Maher; Subhash C. Juneja; Jason A. Inzana; Lianping Xing; Edward M. Schwarz; Andrew J. Berger; Hani A. Awad

OBJECTIVE Glucocorticoid (GC) therapy is associated with increased risk of fracture in patients with rheumatoid arthritis (RA). To elucidate the cause of this increased risk, we examined the effects of chronic erosive inflammatory arthritis and GC treatment on bone quality, structure, and biomechanical properties in a murine model. METHODS Mice with established arthritis and expressing human tumor necrosis factor α (TNFα) transgene (Tg) and their wild-type (WT) littermates were continually treated with GC (prednisolone 5 mg/kg/day via subcutaneous controlled-release pellet) or placebo for 14, 28, or 42 days. Microstructure, biomechanical properties, chemical composition, and morphology of the tibiae and lumbar vertebral bodies were assessed by micro-computed tomography, biomechanical testing, Raman spectroscopy, and histology, respectively. Serum markers of bone turnover were also determined. RESULTS TNF-Tg and GC treatment additively decreased mechanical strength and stiffness in both the tibiae and the vertebral bodies. GC treatment in the TNF-Tg mice increased the ductility of tibiae under torsional loading. These changes were associated with significant alterations in the biochemical and structural composition of the mineral and organic components of the bone matrix, a decrease in osteoblast activity and bone formation, and an increase in osteoclast activity. CONCLUSION Our findings indicate that the concomitant decrease in bone strength and increase in bone ductility associated with chronic inflammation and GC therapy, coupled with the significant changes in the bone quality and structure, may increase the susceptibility of the bone to failure under low-energy loading. This may explain the mechanism of symptomatic insufficiency fractures in patients with RA receiving GC therapy who do not have radiographic manifestations of fracture.


Bone | 2013

Immature mice are more susceptible to the detrimental effects of high fat diet on cancellous bone in the distal femur

Jason A. Inzana; Ming Kung; Lei Shu; Daisuke Hamada; Lianping Xing; Michael J. Zuscik; Hani A. Awad; Robert A. Mooney

With the increasing prevalence of obesity among children and adolescents, it is imperative to understand the implications of early diet-induced obesity on bone health. We hypothesized that cancellous bone of skeletally immature mice is more susceptible to the detrimental effects of a high fat diet (HFD) than mature mice, and that removing excess dietary fat will reverse these adverse effects. Skeletally immature (5weeks old) and mature (20weeks old) male C57BL/6J mice were fed either a HFD (60% kcal fat) or low fat diet (LFD; 10% kcal fat) for 12weeks, at which point, the trabecular bone structure in the distal femoral metaphysis and third lumbar vertebrae were evaluated by micro-computed tomography. The compressive strength of the vertebrae was also measured. In general, the HFD led to deteriorations in cancellous bone structure and compressive biomechanical properties in both age groups. The HFD-fed immature mice had a greater decrease in trabecular bone volume fraction (BVF) in the femoral metaphysis, compared to mature mice (p=0.017 by 2-way ANOVA). In the vertebrae, however, the HFD led to similar reductions in BVF and compressive strength in the two age groups. When mice on the HFD were switched to a LFD (HFD:LFD) for an additional 12weeks, the femoral metaphyseal BVF in immature mice showed no improvements, whereas the mature mice recovered their femoral metaphyseal BVF to that of age-matched lean controls. The vertebral BVF and compressive strength of HFD:LFD mouse bones, following diet correction, were equivalent to those of LFD:LFD mice in both age groups. These data suggest that femoral cancellous metaphyseal bone is more susceptible to the detrimental effects of HFD before skeletal maturity and is less able to recover after correcting the diet. Negative effects of HFD on vertebrae are less severe and can renormalize with LFD:LFD mice after diet correction, in both skeletally immature and mature animals.


Journal of Biomechanics | 2013

Bone fragility beyond strength and mineral density: Raman spectroscopy predicts femoral fracture toughness in a murine model of rheumatoid arthritis.

Jason A. Inzana; Jason R. Maher; Masahiko Takahata; Edward M. Schwarz; Andrew J. Berger; Hani A. Awad

Clinical prediction of bone fracture risk primarily relies on measures of bone mineral density (BMD). BMD is strongly correlated with bone strength, but strength is independent of fracture toughness, which refers to the bones resistance to crack initiation and propagation. In that sense, fracture toughness is more relevant to assessing fragility-related fracture risk, independent of trauma. We hypothesized that bone biochemistry, determined by Raman spectroscopy, predicts bone fracture toughness better than BMD. This hypothesis was tested in tumor necrosis factor-transgenic mice (TNF-tg), which develop inflammatory-erosive arthritis and osteoporosis. The left femurs of TNF-tg and wild type (WT) littermates were measured with Raman spectroscopy and micro-computed tomography. Fracture toughness was assessed by cutting a sharp notch into the anterior surface of the femoral mid-diaphysis and propagating the crack under 3 point bending. Femoral fracture toughness of TNF-tg mice was significantly reduced compared to WT controls (p=0.04). A Raman spectrum-based prediction model of fracture toughness was generated by partial least squares regression (PLSR). Raman spectrum PLSR analysis produced strong predictions of fracture toughness, while BMD was not significantly correlated and produced very weak predictions. Raman spectral components associated with mineralization quality and bone collagen were strongly leveraged in predicting fracture toughness, reiterating the limitations of mineralization density alone.


PLOS ONE | 2014

Tendon repair is compromised in a high fat diet-induced mouse model of obesity and type 2 diabetes.

Michael A. David; Khyrie H. Jones; Jason A. Inzana; Michael J. Zuscik; Hani A. Awad; Robert A. Mooney

Introduction The obesity epidemic has resulted in a large increase in type 2 diabetes (T2D). While some secondary complications of T2D are well recognized and their cellular and molecular mechanisms are defined, the impact of T2D on the musculoskeletal system is less understood. Clinical evidence suggests that tendon strength and repair are compromised. Here, a mouse model of obesity and T2D recapitulates the deleterious effects of this condition on tendon repair. Methods Male C57BL/6J mice at 5 weeks of age were placed on a high fat (HF)(60% kcal) or low fat (10% kcal) diet for 12 weeks. The flexor digitorum longus (FDL) tendon was then injured by puncturing it with a beveled needle. Progression of FDL tendon healing was assessed through biomechanical and histological analysis at 0, 7, 14 and 28 days post-injury. Results HF-fed mice displayed increased body weight and elevated fasting glucose levels, both consistent with T2D. No differences in biomechanical properties of the uninjured FDL tendon were observed after 12 weeks on HF versus lean diets, but decreased maximum force in uninjured tendons from HF-fed mice was observed at 24 weeks. Following puncture injury, tendons from HF-fed mice displayed impaired biomechanical properties at day 28 post injury. In support of defective repair in the HF-fed mice, histological examination of the injury site showed a smaller area of repair and lower cell content in the repair area of HF-fed mice. Insulin receptors were expressed in most cells at the injury site regardless of diet. Discussion The HF-diet mouse model of obesity and T2D reproduces the impaired tendon healing that is observed in this patient population. The exact mechanism is unknown, but we hypothesize that a cellular defect, perhaps involving insulin resistance, leads to decreased proliferation or recruitment to the injury site, and ultimately contributes to defective tendon healing.


Bone | 2015

A novel murine model of established Staphylococcal bone infection in the presence of a fracture fixation plate to study therapies utilizing antibiotic-laden spacers after revision surgery

Jason A. Inzana; Edward M. Schwarz; Stephen L. Kates; Hani A. Awad

Mice are the small animal model of choice in biomedical research due to the low cost and availability of genetically engineered lines. However, the devices utilized in current mouse models of implant-associated bone infection have been limited to intramedullary or trans-cortical pins, which are not amenable to treatments involving extensive debridement of a full-thickness bone loss and placement of a segmental antibiotic spacer. To overcome these limitations, we developed a clinically faithful model that utilizes a locking fracture fixation plate to enable debridement of an infected segmental bone defect (full-thickness osteotomy) during a revision surgery, and investigated the therapeutic effects of placing an antibiotic-laden spacer in the segmental bone defect. To first determine the ideal time point for revision following infection, a 0.7 mm osteotomy in the femoral mid-shaft was stabilized with a radiolucent PEEK fixation plate. The defect was inoculated with bioluminescent Staphylococcus aureus, and the infection was monitored over 14 days by bioluminescent imaging (BLI). Osteolysis and reactive bone formation were assessed by X-ray and micro-computed tomography (micro-CT). The active bacterial infection peaked by 5 days post-inoculation, however the stability of the implant fixation became compromised by 10-14 days post-inoculation due to osteolysis around the screws. Thus, day 7 was defined as the ideal time point to perform the revision surgery. During the revision surgery, the infected tissue was debrided and the osteotomy was widened to 3mm to place a poly-methyl methacrylate spacer, with or without vancomycin. Half of the groups also received systemic vancomycin for the remaining 21 days of the study. The viable bacteria remaining at the end of the study were measured using colony forming unit assays. Volumetric bone changes (osteolysis and reactive bone formation) were directly measured using micro-CT image analysis. Mice that were treated with local or systemic vancomycin did not display gross pathology at the end of the study. While localized vancomycin delivery alone tended to decrease the bacterial burden and osteolysis, these effects were only significant when combined with systemic antibiotic therapy. This novel mouse model replicates key features of implant-associated osteomyelitis that make treatment extremely difficult, such as biofilm formation and osteolysis, and imitates the clinical practice of placing an antibiotic-laden spacer after infected tissue debridement. In addition, the model demonstrates the limitations of current PMMA spacers and could be an invaluable tool for evaluating alternative antimicrobial treatments for implant-associated bone infection.


Journal of Clinical Investigation | 2016

NOTCH signaling in skeletal progenitors is critical for fracture repair

Cuicui Wang; Jason A. Inzana; Anthony J. Mirando; Yinshi Ren; Zhaoyang Liu; Jie Shen; Regis J. O’Keefe; Hani A. Awad; Matthew J. Hilton

Fracture nonunions develop in 10%-20% of patients with fractures, resulting in prolonged disability. Current data suggest that bone union during fracture repair is achieved via proliferation and differentiation of skeletal progenitors within periosteal and soft tissues surrounding bone, while bone marrow stromal/stem cells (BMSCs) and other skeletal progenitors may also contribute. The NOTCH signaling pathway is a critical maintenance factor for BMSCs during skeletal development, although the precise role for NOTCH and the requisite nature of BMSCs following fracture is unknown. Here, we evaluated whether NOTCH and/or BMSCs are required for fracture repair by performing nonstabilized and stabilized fractures on NOTCH-deficient mice with targeted deletion of RBPjk in skeletal progenitors, maturing osteoblasts, and committed chondrocytes. We determined that removal of NOTCH signaling in BMSCs and subsequent depletion of this population result in fracture nonunion, as the fracture repair process was normal in animals harboring either osteoblast- or chondrocyte-specific deletion of RBPjk. Together, this work provides a genetic model of a fracture nonunion and demonstrates the requirement for NOTCH and BMSCs in fracture repair, irrespective of fracture stability and vascularity.


Environmental Health Perspectives | 2015

Effects of Combined Exposure to Lead and High-Fat Diet on Bone Quality in Juvenile Male Mice.

Eric E. Beier; Jason A. Inzana; Tzong-Jen Sheu; Lei Shu; J. Edward Puzas; Robert A. Mooney

Background Lead (Pb) exposure and obesity are co-occurring risk factors for decreased bone mass in the young, particularly in low socioeconomic communities. Objectives The goal of this study was to determine whether the comorbidities of Pb exposure and high-fat diet–induced obesity amplify skeletal deficits independently associated with each of these risk factors, and to explore associated mechanisms of the observed deficiencies. Methods Five-week-old male C57BL/6J mice were placed on low-fat (10% kcal, LFD) or high-fat (60% kcal, HFD) diets for 12 weeks. Mice were exposed to lifetime Pb (50 ppm) through drinking water. Results HFD was associated with increased body mass and glucose intolerance. Both HFD and Pb increased fasting glucose and serum leptin levels. Pb and HFD each reduced trabecular bone quality and together had a further detrimental effect on these bone parameters. Mechanical bone properties of strength were depressed in Pb-exposed bones, but HFD had no significant effect. Both Pb and HFD altered progenitor cell differentiation, promoting osteoclastogenesis and increasing adipogenesis while suppressing osteoblastogenesis. In support of this lineage shift being mediated through altered Wnt signaling, Pb and non-esterified fatty acids in MC3T3 cells increased in vitro PPAR-γ activity and inhibited β-catenin activity. Combining Pb and non-esterified fatty acids enhanced these effects. Conclusions Pb and HFD produced selective deficits in bone accrual that were associated with alterations in progenitor cell activity that may involve reduced Wnt signaling. This study emphasizes the need to assess toxicants together with other risk factors relevant to human health and disease. Citation Beier EE, Inzana JA, Sheu TJ, Shu L, Puzas JE, Mooney RA. 2015. Effects of combined exposure to lead and high-fat diet on bone quality in juvenile male mice. Environ Health Perspect 123:935–943; http://dx.doi.org/10.1289/ehp.1408581


Journal of Biomedical Optics | 2013

Overconstrained library-based fitting method reveals age- and disease-related differences in transcutaneous Raman spectra of murine bones

Jason R. Maher; Jason A. Inzana; Hani A. Awad; Andrew J. Berger

Abstract. Clinical diagnoses of bone health and fracture risk typically rely on measurements of bone density or structure, but the strength of a bone is also dependent on its chemical composition. Raman spectroscopy has been used extensively in ex vivo studies to measure the chemical composition of bone. Recently, spatially offset Raman spectroscopy (SORS) has been utilized to measure bone transcutaneously. Although the results are promising, further advancements are necessary to make noninvasive, in vivo measurements of bone with SORS that are of sufficient quality to generate accurate predictions of fracture risk. In order to separate the signals from bone and soft tissue that contribute to a transcutaneous measurement, we developed an overconstrained extraction algorithm that is based on fitting with spectral libraries. This approach allows for accurate spectral unmixing despite the fact that similar chemical components (e.g., type I collagen) are present in both bone and soft tissue. The algorithm was utilized to transcutaneously detect biochemical differences in the tibiae of wild-type mice between 1 and 7 months of age and between the tibiae of wild-type mice and a mouse model of osteogenesis imperfecta. These results represent the first diagnostically sensitive, transcutaneous measurements of bone using SORS.

Collaboration


Dive into the Jason A. Inzana's collaboration.

Top Co-Authors

Avatar

Hani A. Awad

University of Rochester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Varga

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert A. Mooney

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge