Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason A. Koutcher is active.

Publication


Featured researches published by Jason A. Koutcher.


Nature | 2005

Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis

Zhenbang Chen; Lloyd C. Trotman; David R. Shaffer; Hui Kuan Lin; Zohar A. Dotan; Masaru Niki; Jason A. Koutcher; Howard I. Scher; Thomas Ludwig; William L. Gerald; Carlos Cordon-Cardo; Pier Paolo Pandolfi

Cellular senescence has been theorized to oppose neoplastic transformation triggered by activation of oncogenic pathways in vitro, but the relevance of senescence in vivo has not been established. The PTEN and p53 tumour suppressors are among the most commonly inactivated or mutated genes in human cancer including prostate cancer. Although they are functionally distinct, reciprocal cooperation has been proposed, as PTEN is thought to regulate p53 stability, and p53 to enhance PTEN transcription. Here we show that conditional inactivation of Trp53 in the mouse prostate fails to produce a tumour phenotype, whereas complete Pten inactivation in the prostate triggers non-lethal invasive prostate cancer after long latency. Strikingly, combined inactivation of Pten and Trp53 elicits invasive prostate cancer as early as 2 weeks after puberty and is invariably lethal by 7 months of age. Importantly, acute Pten inactivation induces growth arrest through the p53-dependent cellular senescence pathway both in vitro and in vivo, which can be fully rescued by combined loss of Trp53. Furthermore, we detected evidence of cellular senescence in specimens from early-stage human prostate cancer. Our results demonstrate the relevance of cellular senescence in restricting tumorigenesis in vivo and support a model for cooperative tumour suppression in which p53 is an essential failsafe protein of Pten-deficient tumours.


Cancer Cell | 2011

Reciprocal Feedback Regulation of PI3K and Androgen Receptor Signaling in PTEN-Deficient Prostate Cancer

Brett S. Carver; Caren Chapinski; John Wongvipat; Haley Hieronymus; Yu Chen; Sarat Chandarlapaty; Vivek K. Arora; Carl Le; Jason A. Koutcher; Howard I. Scher; Peter T. Scardino; Neal Rosen; Charles L. Sawyers

Prostate cancer is characterized by its dependence on androgen receptor (AR) and frequent activation of PI3K signaling. We find that AR transcriptional output is decreased in human and murine tumors with PTEN deletion and that PI3K pathway inhibition activates AR signaling by relieving feedback inhibition of HER kinases. Similarly, AR inhibition activates AKT signaling by reducing levels of the AKT phosphatase PHLPP. Thus, these two oncogenic pathways cross-regulate each other by reciprocal feedback. Inhibition of one activates the other, thereby maintaining tumor cell survival. However, combined pharmacologic inhibition of PI3K and AR signaling caused near-complete prostate cancer regressions in a Pten-deficient murine prostate cancer model and in human prostate cancer xenografts, indicating that both pathways coordinately support survival.


PLOS Biology | 2003

Pten Dose Dictates Cancer Progression in the Prostate

Lloyd C. Trotman; Masaru Niki; Zohar A. Dotan; Jason A. Koutcher; Antonio Di Cristofano; Andrew Xiao; Alan S Khoo; Pradip Roy-Burman; Norman M. Greenberg; Terry Van Dyke; Carlos Cordon-Cardo; Pier Paolo Pandolfi

Complete inactivation of the PTEN tumor suppressor gene is extremely common in advanced cancer, including prostate cancer (CaP). However, one PTEN allele is already lost in the vast majority of CaPs at presentation. To determine the consequence of PTEN dose variations on cancer progression, we have generated by homologous recombination a hypomorphic Pten mouse mutant series with decreasing Pten activity: Ptenhy/+ > Pten+/− > Ptenhy/− (mutants in which we have rescued the embryonic lethality due to complete Pten inactivation) > Pten prostate conditional knockout (Ptenpc) mutants. In addition, we have generated and comparatively analyzed two distinct Ptenpc mutants in which Pten is inactivated focally or throughout the entire prostatic epithelium. We find that the extent of Pten inactivation dictate in an exquisite dose-dependent fashion CaP progression, its incidence, latency, and biology. The dose of Pten affects key downstream targets such as Akt, p27Kip1, mTOR, and FOXO3. Our results provide conclusive genetic support for the notion that PTEN is haploinsufficient in tumor suppression and that its dose is a key determinant in cancer progression.


The Journal of Nuclear Medicine | 1984

Principles of Nuclear Magnetic Resonance

Jason A. Koutcher; C.Tyler Burt

The basic principles of nuclear magnetic resonance (NMR) are discussed. The concepts presented include a qualitative quantum-mechanical approach to NMR spectroscopy and a classical-mechanical approach to time-dependent NMR phenomena (relaxation effects). The spectroscopic concepts discussed include absorption of radiation by matter, spin and energy quantization , chemical shift, and spin-spin splitting. The time-dependent phenomena include the concepts of T1 and T2, the spin-lattice and spin-spin relaxation time, and Fourier-transform NMR spectroscopy.


Nature | 2006

Identification of a tumour suppressor network opposing nuclear Akt function

Lloyd C. Trotman; Andrea Alimonti; Pier Paolo Scaglioni; Jason A. Koutcher; Carlos Cordon-Cardo; Pier Paolo Pandolfi

The proto-oncogene AKT (also known as PKB) is activated in many human cancers, mostly owing to loss of the PTEN tumour suppressor. In such tumours, AKT becomes enriched at cell membranes where it is activated by phosphorylation. Yet many targets inhibited by phosphorylated AKT (for example, the FOXO transcription factors) are nuclear; it has remained unclear how relevant nuclear phosphorylated AKT (pAKT) function is for tumorigenesis. Here we show that the PMLtumour suppressor prevents cancer by inactivating pAKT inside the nucleus. We find in a mouse model that Pml loss markedly accelerates tumour onset, incidence and progression in Pten-heterozygous mutants, and leads to female sterility with features that recapitulate the phenotype of Foxo3a knockout mice. We show that Pml deficiency on its own leads to tumorigenesis in the prostate, a tissue that is exquisitely sensitive to pAkt levels, and demonstrate that Pml specifically recruits the Akt phosphatase PP2a as well as pAkt into Pml nuclear bodies. Notably, we find that Pml-null cells are impaired in PP2a phosphatase activity towards Akt, and thus accumulate nuclear pAkt. As a consequence, the progressive reduction in Pml dose leads to inactivation of Foxo3a-mediated transcription of proapoptotic Bim and the cell cycle inhibitor p27kip1. Our results demonstrate that Pml orchestrates a nuclear tumour suppressor network for inactivation of nuclear pAkt, and thus highlight the importance of AKT compartmentalization in human cancer pathogenesis and treatment.


Journal of Clinical Investigation | 2009

Dual targeting of EGFR can overcome a major drug resistance mutation in mouse models of EGFR mutant lung cancer

Lucia Regales; Yixuan Gong; Ronglai Shen; Elisa de Stanchina; Igor Vivanco; Aviva Goel; Jason A. Koutcher; Maria Spassova; Ouathek Ouerfelli; Ingo K. Mellinghoff; Maureen F. Zakowski; Katerina Politi; William Pao

EGFR is a major anticancer drug target in human epithelial tumors. One effective class of agents is the tyrosine kinase inhibitors (TKIs), such as gefitinib and erlotinib. These drugs induce dramatic responses in individuals with lung adenocarcinomas characterized by mutations in exons encoding the EGFR tyrosine kinase domain, but disease progression invariably occurs. A major reason for such acquired resistance is the outgrowth of tumor cells with additional TKI-resistant EGFR mutations. Here we used relevant transgenic mouse lung tumor models to evaluate strategies to overcome the most common EGFR TKI resistance mutation, T790M. We treated mice bearing tumors harboring EGFR mutations with a variety of anticancer agents, including a new irreversible EGFR TKI that is under development (BIBW-2992) and the EGFR-specific antibody cetuximab. Surprisingly, we found that only the combination of both agents together induced dramatic shrinkage of erlotinib-resistant tumors harboring the T790M mutation, because together they efficiently depleted both phosphorylated and total EGFR. We suggest that these studies have immediate therapeutic implications for lung cancer patients, as dual targeting with cetuximab and a second-generation EGFR TKI may be an effective strategy to overcome T790M-mediated drug resistance. Moreover, this approach could serve as an important model for targeting other receptor tyrosine kinases activated in human cancers.


Cancer Research | 2004

Dose-Dependent Effects of Platelet-Derived Growth Factor-B on Glial Tumorigenesis

Alan H. Shih; Chengkai Dai; Xiaoyi Hu; Marc K. Rosenblum; Jason A. Koutcher; Eric C. Holland

Platelet-derived growth factor (PDGF) is expressed in many different tumors, but its precise roles in tumorigenesis remain to be fully defined. Here, we report on a mouse model that demonstrates dose-dependent effects of PDGF-B on glial tumorigenesis. By removing inhibitory regulatory elements in the PDGFB mRNA, we are able to substantially elevate its expression in tumor cells using a retroviral delivery system. This elevation in PDGF-B production results in tumors with shortened latency, increased cellularity, regions of necrosis, and general high-grade character. In addition, elevated PDGF-B in these tumors also mediates vascular smooth muscle cell recruitment that supports tumor angiogenesis. PDGF receptor (PDGFR) signaling appears to be required for the maintenance of these high-grade characteristics, because treatment of high-grade tumors with a small molecule inhibitor of PDGFR results in reversion to a lower grade tumor histology. Our data show that PDGFR signaling quantitatively regulates tumor grade and is required to sustain high-grade oligodendrogliomas.


Radiology | 2008

Prostate Cancer: Identification with Combined Diffusion-weighted MR Imaging and 3D 1H MR Spectroscopic Imaging—Correlation with Pathologic Findings1

Yousef Mazaheri; Amita Shukla-Dave; Hedvig Hricak; Samson W. Fine; Jingbo Zhang; Gloria Inurrigarro; Chaya S. Moskowitz; Nicole Ishill; Victor E. Reuter; Karim Touijer; Kristen L. Zakian; Jason A. Koutcher

PURPOSE To retrospectively measure the mean apparent diffusion coefficient (ADC) with diffusion-weighted magnetic resonance (MR) imaging and the mean metabolic ratio (MET) with three-dimensional (3D) hydrogen 1 ((1)H) MR spectroscopic imaging in regions of interest (ROIs) drawn over benign and malignant peripheral zone (PZ) prostatic tissue and to assess ADC, MET, and combined ADC and MET for identifying malignant ROIs, with whole-mount histopathologic examination as the reference standard. MATERIALS AND METHODS The institutional review board approved this HIPAA-compliant retrospective study and issued a waiver of informed consent. From among 61 consecutive patients with prostate cancer, 38 men (median age, 61 years; range, 42-72 years) who underwent 1.5-T endorectal MR imaging before radical prostatectomy and who fulfilled all inclusion criteria of no prior hormonal or radiation treatment and at least one PZ lesion (volume, >0.1 cm(3)) at whole-mount pathologic examination were included. ADC maps were generated from diffusion-weighted MR imaging data, and MET maps of (choline plus polyamine plus creatine)/citrate were calculated from 3D (1)H MR spectroscopic imaging data. ROIs in the PZ identified by matching pathologic slides with T2-weighted images were overlaid on MET and ADC maps. Areas under the receiver operating characteristic curves (AUCs) were used to evaluate accuracy. RESULTS The mean ADC +/- standard deviation, (1.39 +/- 0.23) x 10(-3) mm(2)/sec, and mean MET (0.92 +/- 0.32) for malignant ROIs differed significantly from the mean ADC, (1.69 +/- 0.24) x 10(-3) mm(2)/sec, and mean MET (0.73 +/- 0.18) for benign ROIs (P < .001 for both). In distinguishing malignant ROIs, combined ADC and MET (AUC = 0.85) performed significantly better than MET alone (AUC = 0.74; P = .005) and was also better than ADC alone (AUC = 0.81), although the difference was not statistically significant (P = .09). CONCLUSION The combination of ADC and MET performs significantly better than MET for differentiating between benign and malignant ROIs in the PZ.


Radiology | 2009

Prostate Tumor Volume Measurement with Combined T2-weighted Imaging and Diffusion-weighted MR: Correlation with Pathologic Tumor Volume

Yousef Mazaheri; Hedvig Hricak; Samson W. Fine; Oguz Akin; Amita Shukla-Dave; Nicole Ishill; Chaya S. Moskowitz; Joanna E. Grater; Victor E. Reuter; Kristen L. Zakian; Karim Touijer; Jason A. Koutcher

PURPOSE To retrospectively determine the accuracy of diffusion-weighted (DW) magnetic resonance (MR) imaging for identifying cancer in the prostate peripheral zone (PZ) and to assess the accuracy of tumor volume measurements made with T2-weighted imaging and combined T2-weighted and DW MR imaging by using surgical pathologic examination as the reference standard. MATERIALS AND METHODS The institutional review board issued a waiver of informed consent for this HIPAA-compliant study. Forty-two patients underwent endorectal MR at 1.5 T before undergoing radical prostatectomy for prostate cancer and had at least one PZ tumor larger than 0.1 cm(3) at surgical pathologic examination. On T2-weighted images, an experienced radiologist outlined suspected PZ tumors. Two apparent diffusion coefficient (ADC) cutoff values were identified by using the Youden index and published literature. Image cluster analysis was performed on voxels within the suspected tumor regions. Associations between volume measurements from imaging and from pathologic examination were assessed by using concordance correlation coefficients (CCCs). The sensitivity and specificity of ADCs for identifying malignant PZ voxels were calculated. RESULTS In identifying malignant voxels, respective ADC cutoff values of 0.0014 and 0.0016 mm(2)/sec yielded sensitivity of 82% and 95% and specificity of 85% and 65%, respectively. Sixty PZ cancer lesions larger than 0.1 cm(3) were found at pathologic examination; 43 were detected by the radiologist. CCCs between imaging and pathologic tumor volume measurements were 0.36 for T2-weighted imaging, and 0.46 and 0.60 for combined T2-weighted and DW MR imaging with ADC cutoffs of 0.0014 and 0.0016 mm(2)/sec, respectively; the CCC of combined T2-weighted and DW MR imaging (ADC cutoff, 0.0016 mm(2)/sec) was significantly higher (P = .006) than that of T2-weighted imaging alone. CONCLUSION Adding DW MR to T2-weighted imaging can significantly improve the accuracy of prostate PZ tumor volume measurement. SUPPLEMENTAL MATERIAL http://radiology.rsnajnls.org/cgi/content/full/252/2/449/DC1.


BJUI | 2007

The utility of magnetic resonance imaging and spectroscopy for predicting insignificant prostate cancer: An initial analysis

Amita Shukla-Dave; Hedvig Hricak; Michael W. Kattan; Darko Pucar; Kentaro Kuroiwa; Hui Ni Chen; Jessica Spector; Jason A. Koutcher; Kristen L. Zakian; Peter T. Scardino

To design new models that combine clinical variables and biopsy data with magnetic resonance imaging (MRI) and MR spectroscopic imaging (MRSI) data, and assess their value in predicting the probability of insignificant prostate cancer.

Collaboration


Dive into the Jason A. Koutcher's collaboration.

Top Co-Authors

Avatar

Kristen L. Zakian

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Amita Shukla-Dave

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Ellen Ackerstaff

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ronald G. Blasberg

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Cornelia Matei

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Hedvig Hricak

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Alan A. Alfieri

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

John L. Humm

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

R. R. Alfano

City University of New York

View shared research outputs
Researchain Logo
Decentralizing Knowledge