Jason A. Young
University of California, San Diego
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jason A. Young.
The New England Journal of Medicine | 2013
Tuan D. Le; Edwina Wright; Davey M. Smith; Weijing He; Gabriel Catano; Jason F. Okulicz; Jason A. Young; Robert A. Clark; Douglas D. Richman; Susan J. Little; Sunil K. Ahuja
BACKGROUND The relationship between the timing of the initiation of antiretroviral therapy (ART) after infection with human immunodeficiency virus type 1 (HIV-1) and the recovery of CD4+ T-cell counts is unknown. METHODS In a prospective, observational cohort of persons with acute or early HIV-1 infection, we determined the trajectory of CD4+ counts over a 48-month period in partially overlapping study sets: study set 1 included 384 participants during the time window in which they were not receiving ART and study set 2 included 213 participants who received ART soon after study entry or sometime thereafter and had a suppressed plasma HIV viral load. We investigated the likelihood and rate of CD4+ T-cell recovery to 900 or more cells per cubic millimeter within 48 months while the participants were receiving viral-load-suppressive ART. RESULTS Among the participants who were not receiving ART, CD4+ counts increased spontaneously, soon after HIV-1 infection, from the level at study entry (median, 495 cells per cubic millimeter; interquartile range, 383 to 622), reached a peak value (median, 763 cells per cubic millimeter; interquartile range, 573 to 987) within approximately 4 months after the estimated date of infection, and declined progressively thereafter. Recovery of CD4+ counts to 900 or more cells per cubic millimeter was seen in approximately 64% of the participants who initiated ART earlier (≤4 months after the estimated date of HIV infection) as compared with approximately 34% of participants who initiated ART later (>4 months) (P<0.001). After adjustment for whether ART was initiated when the CD4+ count was 500 or more cells per cubic millimeter or less than 500 cells per cubic millimeter, the likelihood that the count would increase to 900 or more cells per cubic millimeter was lower by 65% (odds ratio, 0.35), and the rate of recovery was slower by 56% (rate ratio, 0.44), if ART was initiated later rather than earlier. There was no association between the plasma HIV RNA level at the time of initiation of ART and CD4+ T-cell recovery. CONCLUSIONS A transient, spontaneous restoration of CD4+ T-cell counts occurs in the 4-month time window after HIV-1 infection. Initiation of ART during this period is associated with an enhanced likelihood of recovery of CD4+ counts. (Funded by the National Institute of Allergy and Infectious Diseases and others.).
BMC Genomics | 2008
Jason A. Young; Jeffery R Johnson; Christopher Benner; S. Frank Yan; Kaisheng Chen; Karine G. Le Roch; Yingyao Zhou; Elizabeth A. Winzeler
BackgroundWith the sequence of the Plasmodium falciparum genome and several global mRNA and protein life cycle expression profiling projects now completed, elucidating the underlying networks of transcriptional control important for the progression of the parasite life cycle is highly pertinent to the development of new anti-malarials. To date, relatively little is known regarding the specific mechanisms the parasite employs to regulate gene expression at the mRNA level, with studies of the P. falciparum genome sequence having revealed few cis-regulatory elements and associated transcription factors. Although it is possible the parasite may evoke mechanisms of transcriptional control drastically different from those used by other eukaryotic organisms, the extreme AT-rich nature of P. falciparum intergenic regions (~90% AT) presents significant challenges to in silico cis-regulatory element discovery.ResultsWe have developed an algorithm called Gene Enrichment Motif Searching (GEMS) that uses a hypergeometric-based scoring function and a position-weight matrix optimization routine to identify with high-confidence regulatory elements in the nucleotide-biased and repeat sequence-rich P. falciparum genome. When applied to promoter regions of genes contained within 21 co-expression gene clusters generated from P. falciparum life cycle microarray data using the semi-supervised clustering algorithm Ontology-based Pattern Identification, GEMS identified 34 putative cis-regulatory elements associated with a variety of parasite processes including sexual development, cell invasion, antigenic variation and protein biosynthesis. Among these candidates were novel motifs, as well as many of the elements for which biological experimental evidence already exists in the Plasmodium literature. To provide evidence for the biological relevance of a cell invasion-related element predicted by GEMS, reporter gene and electrophoretic mobility shift assays were conducted.ConclusionThis GEMS analysis demonstrates that in silico regulatory element discovery can be successfully applied to challenging repeat-sequence-rich, base-biased genomes such as that of P. falciparum. The fact that regulatory elements were predicted from a diverse range of functional gene clusters supports the hypothesis that cis-regulatory elements play a role in the transcriptional control of many P. falciparum biological processes. The putative regulatory elements described represent promising candidates for future biological investigation into the underlying transcriptional control mechanisms of gene regulation in malaria parasites.
Journal of Virology | 2011
Sara Gianella; Wayne Delport; Mary E. Pacold; Jason A. Young; Jun Yong Choi; Susan J. Little; Douglas D. Richman; Sergei L. Kosakovsky Pond; Davey M. Smith
ABSTRACT Reports of a high frequency of the transmission of minority viral populations with drug-resistant mutations (DRM) are inconsistent with evidence that HIV-1 infections usually arise from mono- or oligoclonal transmission. We performed ultradeep sequencing (UDS) of partial HIV-1 gag, pol, and env genes from 32 recently infected individuals. We then evaluated overall and per-site diversity levels, selective pressure, sequence reproducibility, and presence of DRM and accessory mutations (AM). To differentiate biologically meaningful mutations from those caused by methodological errors, we obtained multinomial confidence intervals (CI) for the proportion of DRM at each site and fitted a binomial mixture model to determine background error rates for each sample. We then examined the association between detected minority DRM and the virologic failure of first-line antiretroviral therapy (ART). Similar to other studies, we observed increased detection of DRM at low frequencies (average, 0.56%; 95% CI, 0.43 to 0.69; expected UDS error, 0.21 ± 0.08% mutations/site). For 8 duplicate runs, there was variability in the proportions of minority DRM. There was no indication of increased diversity or selection at DRM sites compared to other sites and no association between minority DRM and AM. There was no correlation between detected minority DRM and clinical failure of first-line ART. It is unlikely that minority viral variants harboring DRM are transmitted and maintained in the recipient host. The majority of low-frequency DRM detected using UDS are likely errors inherent to UDS methodology or a consequence of error-prone HIV-1 replication.
PLOS ONE | 2008
Yingyao Zhou; Kota Arun Kumar; Scott J. Westenberger; Phillippe Refour; Bin Zhou; Fengwu Li; Jason A. Young; Kaisheng Chen; David Plouffe; Kerstin Henson; Victor Nussenzweig; Jane M. Carlton; Joseph M. Vinetz; Manoj T. Duraisingh; Elizabeth A. Winzeler
A fundamental problem in systems biology and whole genome sequence analysis is how to infer functions for the many uncharacterized proteins that are identified, whether they are conserved across organisms of different phyla or are phylum-specific. This problem is especially acute in pathogens, such as malaria parasites, where genetic and biochemical investigations are likely to be more difficult. Here we perform comparative expression analysis on Plasmodium parasite life cycle data derived from P. falciparum blood, sporozoite, zygote and ookinete stages, and P. yoelii mosquito oocyst and salivary gland sporozoites, blood and liver stages and show that type II fatty acid biosynthesis genes are upregulated in liver and insect stages relative to asexual blood stages. We also show that some universally uncharacterized genes with orthologs in Plasmodium species, Saccharomyces cerevisiae and humans show coordinated transcription patterns in large collections of human and yeast expression data and that the function of the uncharacterized genes can sometimes be predicted based on the expression patterns across these diverse organisms. We also use a comprehensive and unbiased literature mining method to predict which uncharacterized parasite-specific genes are likely to have roles in processes such as gliding motility, host-cell interactions, sporozoite stage, or rhoptry function. These analyses, together with protein-protein interaction data, provide probabilistic models that predict the function of 926 uncharacterized malaria genes and also suggest that malaria parasites may provide a simple model system for the study of some human processes. These data also provide a foundation for further studies of transcriptional regulation in malaria parasites.
Bioinformatics | 2005
Yingyao Zhou; Jason A. Young; Andrey Santrosyan; Kaisheng Chen; S. Frank Yan; Elizabeth A. Winzeler
MOTIVATION With the emergence of genome-wide expression profiling data sets, the guilt by association (GBA) principle has been a cornerstone for deriving gene functional interpretations in silico. Given the limited success of traditional methods for producing clusters of genes with great amounts of functional similarity, new data-mining algorithms are required to fully exploit the potential of high-throughput genomic approaches. RESULTS Ontology-based pattern identification (OPI) is a novel data-mining algorithm that systematically identifies expression patterns that best represent existing knowledge of gene function. Instead of relying on a universal threshold of expression similarity to define functionally related groups of genes, OPI finds the optimal analysis settings that yield gene expression patterns and gene lists that best predict gene function using the principle of GBA. We applied OPI to a publicly available gene expression data set on the life cycle of the malarial parasite Plasmodium falciparum and systematically annotated genes for 320 functional categories based on current Gene Ontology annotations. An ontology-based hierarchical tree of the 320 categories provided a systems-wide biological view of this important malarial parasite.
International Review of Cell and Molecular Biology | 2008
Célia R.S. Garcia; Mauro Ferreira de Azevedo; Gerhard Wunderlich; Alexandre Budu; Jason A. Young; Lawrence H. Bannister
In this review, we bring together some of the approaches toward understanding the cellular and molecular biology of Plasmodium species and their interaction with their host red blood cells. Considerable impetus has come from the development of new methods of molecular genetics and bioinformatics, and it is important to evaluate the wealth of these novel data in the context of basic cell biology. We describe how these approaches are gaining valuable insights into the parasite-host cell interaction, including (1) the multistep process of red blood cell invasion by the merozoite; (2) the mechanisms by which the intracellular parasite feeds on the red blood cell and exports parasite proteins to modify its cytoadherent properties; (3) the modulation of the cell cycle by sensing the environmental tryptophan-related molecules; (4) the mechanism used to survive in a low Ca(2+) concentration inside red blood cells; (5) the activation of signal transduction machinery and the regulation of intracellular calcium; (6) transfection technology; and (7) transcriptional regulation and genome-wide mRNA studies in Plasmodium falciparum.
AIDS | 2013
Josué Pérez-Santiago; Sara Gianella; Marta Massanella; Celsa A. Spina; Maile Y. Karris; Susanna R. Var; Derek Patel; Parris S. Jordan; Jason A. Young; Susan J. Little; Douglas D. Richman; Davey M. Smith
Objective:Early HIV infection is characterized by a dramatic depletion of CD4 T cells in the gastrointestinal tract and translocation of bacterial products from the gut into the blood. In this study, we evaluated if gut bacterial profiles were associated with immune status before and after starting antiretroviral therapy (ART). Design:We evaluated the gut microbiota of men recently infected with HIV (n = 13) who were participating in a randomized, double-blind controlled trial of combination ART and maraviroc versus placebo and who were followed for 48 weeks. Methods:To evaluate the gut microbiota of participants, we pyrosequenced the bacterial populations from anal swabs collected before and longitudinally after the initiation of ART. Associations of the gut flora with clinical variables (lymphocyte profiles and viral loads), activation and proliferation markers in peripheral blood mononuclear cells and gut biopsies (measured by flow cytometry) and markers of microbial translocation (lipopolysaccharide and soluble CD14) were performed by regression analyses using R statistical software. Results:Using pyrosequencing, we identified that higher proportions of Lactobacillales in the distal gut of recently HIV-infected individuals were associated with lower markers of microbial translocation, higher CD4% and lower viral loads before ART was started. Similarly, during ART, higher proportions of gut Lactobacillales were associated with higher CD4%, less microbial translocation, less systemic immune activation, less gut T lymphocyte proliferation, and higher CD4% in the gut. Conclusion:Shaping the gut microbiome, especially proportions of Lactobacillales, could help to preserve immune function during HIV infection.
PLOS ONE | 2014
Susan J. Little; Sergei L. Kosakovsky Pond; Christy M. Anderson; Jason A. Young; Joel O. Wertheim; Sanjay R. Mehta; Susanne May; Davey M. Smith
Objective To reconstruct the local HIV-1 transmission network from 1996 to 2011 and use network data to evaluate and guide efforts to interrupt transmission. Design HIV-1 pol sequence data were analyzed to infer the local transmission network. Methods We analyzed HIV-1 pol sequence data to infer a partial local transmission network among 478 recently HIV-1 infected persons and 170 of their sexual and social contacts in San Diego, California. A transmission network score (TNS) was developed to estimate the risk of HIV transmission from a newly diagnosed individual to a new partner and target prevention interventions. Results HIV-1 pol sequences from 339 individuals (52.3%) were highly similar to sequences from at least one other participant (i.e., clustered). A high TNS (top 25%) was significantly correlated with baseline risk behaviors (number of unique sexual partners and insertive unprotected anal intercourse (p = 0.014 and p = 0.0455, respectively) and predicted risk of transmission (p<0.0001). Retrospective analysis of antiretroviral therapy (ART) use, and simulations of ART targeted to individuals with the highest TNS, showed significantly reduced network level HIV transmission (p<0.05). Conclusions Sequence data from an HIV-1 screening program focused on recently infected persons and their social and sexual contacts enabled the characterization of a highly connected transmission network. The network-based risk score (TNS) was highly correlated with transmission risk behaviors and outcomes, and can be used identify and target effective prevention interventions, like ART, to those at a greater risk for HIV-1 transmission.
PLOS ONE | 2012
Alexander N. Shakhov; Vijay K. Singh; Frederick Bone; Alec Cheney; Yevgeniy Kononov; Peter Krasnov; Troitza K. Bratanova-Toshkova; Vera V. Shakhova; Jason A. Young; Michael M. Weil; Angela Panoskaltsis-Mortari; Christie M. Orschell; Patricia Stanhope Baker; Andrei V. Gudkov; Elena Feinstein
Bacterial lipoproteins (BLP) induce innate immune responses in mammals by activating heterodimeric receptor complexes containing Toll-like receptor 2 (TLR2). TLR2 signaling results in nuclear factor-kappaB (NF-κB)-dependent upregulation of anti-apoptotic factors, anti-oxidants and cytokines, all of which have been implicated in radiation protection. Here we demonstrate that synthetic lipopeptides (sLP) that mimic the structure of naturally occurring mycoplasmal BLP significantly increase mouse survival following lethal total body irradiation (TBI) when administered between 48 hours before and 24 hours after irradiation. The TBI dose ranges against which sLP are effective indicate that sLP primarily impact the hematopoietic (HP) component of acute radiation syndrome. Indeed, sLP treatment accelerated recovery of bone marrow (BM) and spleen cellularity and ameliorated thrombocytopenia of irradiated mice. sLP did not improve survival of irradiated TLR2-knockout mice, confirming that sLP-mediated radioprotection requires TLR2. However, sLP was radioprotective in chimeric mice containing TLR2-null BM on a wild type background, indicating that radioprotection of the HP system by sLP is, at least in part, indirect and initiated in non-BM cells. sLP injection resulted in strong transient induction of multiple cytokines with known roles in hematopoiesis, including granulocyte colony-stimulating factor (G-CSF), keratinocyte chemoattractant (KC) and interleukin-6 (IL-6). sLP-induced cytokines, particularly G-CSF, are likely mediators of the radioprotective/mitigative activity of sLP. This study illustrates the strong potential of LP-based TLR2 agonists for anti-radiation prophylaxis and therapy in defense and medical scenarios.
AIDS | 2013
Sara Gianella; Sheldon R. Morris; Christy M. Anderson; Celsa A. Spina; Milenka V. Vargas; Jason A. Young; Douglas D. Richman; Susan J. Little; Davey M. Smith
Objectives:To further understand the role that chronic viral infections of the male genital tract play on HIV-1 dynamics and replication. Design:Retrospective, observational study including 236 paired semen and blood samples collected from 115 recently HIV-1 infected antiretroviral naive men who have sex with men. Methods:In this study, we evaluated the association of seminal HIV-1 shedding to coinfections with seven herpes viruses, blood plasma HIV-1 RNA levels, CD4+ T-cell counts, presence of transmitted drug resistance mutations (DRMs) in HIV-1 pol, participants’ age and stage of HIV-infection using multivariate generalized estimating equation methods. Associations between herpes virus shedding, seminal HIV-1 levels, number and immune activation of seminal T-cells was also investigated (Mann–Whitney). Results:Seminal herpes virus shedding was observed in 75.7% of individuals. Blood HIV-1 RNA levels (P < 0.01) and seminal cytomegalovirus (CMV) and human herpes virus (HHV)-8 levels (P < 0.05) were independent predictors of detectable seminal HIV-1 RNA; higher seminal HIV-1 levels were associated with CMV and Epstein–Barr virus (EBV) seminal shedding, and absence of DRM (P < 0.05). CMV and EBV seminal shedding was associated with higher number of seminal T-lymphocytes, but only presence of seminal CMV DNA was associated with increased immune activation of T-lymphocytes in semen and blood. Conclusion:Despite high median CD4+ T-cells numbers, we found a high frequency of herpes viruses seminal shedding in our cohort. Shedding of CMV, EBV and HHV-8 and absence of DRM were associated with increased frequency of HIV-1 shedding and/or higher levels of HIV-1 RNA in semen, which are likely important cofactors for HIV-1 transmission.