Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason Boggs is active.

Publication


Featured researches published by Jason Boggs.


Cancer Research | 2013

A Novel Tankyrase Small-Molecule Inhibitor Suppresses APC Mutation–Driven Colorectal Tumor Growth

Ted Lau; Emily Chan; Marinella Callow; Jo Waaler; Jason Boggs; Robert A. Blake; Steven Magnuson; Amy Sambrone; Melissa Schutten; Ron Firestein; Ondrej Machon; Vladimir Korinek; Edna F. Choo; Mark Merchant; Paul Polakis; Daniel Holsworth; Stefan Krauss; Mike Costa

Most colorectal cancers (CRC) are initiated by mutations of APC, leading to increased β-catenin-mediated signaling. However, continued requirement of Wnt/β-catenin signaling for tumor progression in the context of acquired KRAS and other mutations is less well-established. To attenuate Wnt/β-catenin signaling in tumors, we have developed potent and specific small-molecule tankyrase inhibitors, G007-LK and G244-LM, that reduce Wnt/β-catenin signaling by preventing poly(ADP-ribosyl)ation-dependent AXIN degradation, thereby promoting β-catenin destabilization. We show that novel tankyrase inhibitors completely block ligand-driven Wnt/β-catenin signaling in cell culture and display approximately 50% inhibition of APC mutation-driven signaling in most CRC cell lines. It was previously unknown whether the level of AXIN protein stabilization by tankyrase inhibition is sufficient to impact tumor growth in the absence of normal APC activity. Compound G007-LK displays favorable pharmacokinetic properties and inhibits in vivo tumor growth in a subset of APC-mutant CRC xenograft models. In the xenograft model most sensitive to tankyrase inhibitor, COLO-320DM, G007-LK inhibits cell-cycle progression, reduces colony formation, and induces differentiation, suggesting that β-catenin-dependent maintenance of an undifferentiated state may be blocked by tankyrase inhibition. The full potential of the antitumor activity of G007-LK may be limited by intestinal toxicity associated with inhibition of Wnt/β-catenin signaling and cell proliferation in intestinal crypts. These results establish proof-of-concept antitumor efficacy for tankyrase inhibitors in APC-mutant CRC models and uncover potential diagnostic and safety concerns to be overcome as tankyrase inhibitors are advanced into the clinic.


Drug Metabolism and Disposition | 2011

Significant Species Difference in Amide Hydrolysis of GDC-0834, a Novel Potent and Selective Bruton's Tyrosine Kinase Inhibitor

Luna Liu; Jason S. Halladay; Y. Shin; Susan Wong; Melis Coraggio; H. La; M. Baumgardner; H. Le; S. Gopaul; Jason Boggs; P. Kuebler; J. C. Davis; X. C. Liao; Joseph W. Lubach; Alan Deese; C. G. Sowell; K. S. Currie; W. B. Young; S. C. Khojasteh; Cornelis E. C. A. Hop; Harvey Wong

(R)-N-(3-(6-(4-(1,4-Dimethyl-3-oxopiperazin-2-yl)phenylamino)-4-methyl-5-oxo-4,5-dihydropyrazin-2-yl)-2-methylphenyl)-4,5,6,7-tetrahydrobenzo[b]thiophene-2-carboxamide (GDC-0834) is a potent and selective inhibitor of Brutons tyrosine kinase (BTK), investigated as a potential treatment for rheumatoid arthritis. In vitro metabolite identification studies in hepatocytes revealed predominant formation of an inactive metabolite (M1) via amide hydrolysis in human. The formation of M1 appeared to be NADPH-independent in human liver microsomes. M1 was found in only minor to moderate quantities in plasma from preclinical species dosed with GDC-0834. Human clearance predictions using various methodologies resulted in estimates ranging from low to high. In addition, GDC-0834 exhibited low clearance in PXB chimeric mice with humanized liver. Uncertainty in human pharmacokinetic prediction and high interest in a BTK inhibitor for clinical evaluation prompted an investigational new drug strategy, in which GDC-0834 was rapidly advanced to a single-dose human clinical trial. GDC-0834 plasma concentrations in humans were below the limit of quantitation (<1 ng/ml) in most samples from the cohorts dosed orally at 35 and 105 mg. In contrast, substantial plasma concentrations of M1 were observed. In human plasma and urine, only M1 and its sequential metabolites were identified. The formation kinetics of M1 was evaluated in rat, dog, monkey, and human liver microsomes in the absence of NADPH. The maximum rate of M1 formation (Vmax) was substantially higher in human compared with that in other species. In contrast, the Michaelis-Menten constant (Km) was comparable among species. Intrinsic clearance (Vmax/Km) of GDC-0834 from M1 formation in human was 23- to 169-fold higher than observed in rat, dog, and monkey.


Journal of Medicinal Chemistry | 2014

Back Pocket Flexibility Provides Group II p21-Activated Kinase (PAK) Selectivity for Type I 1/2 Kinase Inhibitors.

Steven Staben; Jianwen A. Feng; Karen Lyle; Marcia Belvin; Jason Boggs; Jason Burch; Ching-ching Chua; Haifeng Cui; Antonio G. DiPasquale; Lori Friedman; Christopher E. Heise; Hartmut Koeppen; Adrian Kotey; Robert Mintzer; Angela Oh; David Allen Roberts; Lionel Rouge; Joachim Rudolph; Christine Tam; Weiru Wang; Yisong Xiao; Amy E. Young; Yamin Zhang; Klaus P. Hoeflich

Structure-based methods were used to design a potent and highly selective group II p21-activated kinase (PAK) inhibitor with a novel binding mode, compound 17. Hydrophobic interactions within a lipophilic pocket past the methionine gatekeeper of group II PAKs approached by these type I 1/2 binders were found to be important for improving potency. A structure-based hypothesis and strategy for achieving selectivity over group I PAKs, and the broad kinome, based on unique flexibility of this lipophilic pocket, is presented. A concentration-dependent decrease in tumor cell migration and invasion in two triple-negative breast cancer cell lines was observed with compound 17.


Journal of Medicinal Chemistry | 2012

Discovery of Novel Allosteric Mitogen-Activated Protein Kinase Kinase (MEK) 1,2 Inhibitors Possessing Bidentate Ser212 Interactions.

Robert Heald; Philip Stephen Jackson; Pascal Savy; Mark M. Jones; Emanuela Gancia; Brenda Burton; Richard Newman; Jason Boggs; Emily Chan; Jocelyn Chan; Edna F. Choo; Mark Merchant; Patrick Rudewicz; Mark Ultsch; Christian Wiesmann; Qin Yue; Marcia Belvin; Steve Price

Using structure-based design, two novel series of highly potent biaryl amine mitogen-activated protein kinase kinase (MEK) inhibitors have been discovered. These series contain an H-bond acceptor, in a shifted position compared with previously disclosed compounds, and an adjacent H-bond donor, resulting in a bidentate interaction with the Ser212 residue of MEK1. The most potent compound identified, 1 (G-894), is orally active in in vivo pharmacodynamic and tumor xenograft models.


Journal of Medicinal Chemistry | 2014

Discovery of Selective 4-Amino-pyridopyrimidine Inhibitors of MAP4K4 Using Fragment-Based Lead Identification and Optimization.

Terry D. Crawford; Chudi Ndubaku; Huifen Chen; Jason Boggs; Brandon J. Bravo; Kelly DeLaTorre; Anthony M. Giannetti; Stephen E. Gould; Seth F. Harris; Steven Magnuson; Erin McNamara; Lesley J. Murray; Jim Nonomiya; Amy Sambrone; Stephen Schmidt; Tanya Smyczek; Mark S. Stanley; Philip Vitorino; Lan Wang; Kristina West; Ping Wu; Weilan Ye

Mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) is a serine/threonine kinase implicated in the regulation of many biological processes. A fragment-based lead discovery approach was used to generate potent and selective MAP4K4 inhibitors. The fragment hit pursued in this article had excellent ligand efficiency (LE), an important attribute for subsequent successful optimization into drug-like lead compounds. The optimization efforts eventually led us to focus on the pyridopyrimidine series, from which 6-(2-fluoropyridin-4-yl)pyrido[3,2-d]pyrimidin-4-amine (29) was identified. This compound had low nanomolar potency, excellent kinase selectivity, and good in vivo exposure, and demonstrated in vivo pharmacodynamic effects in a human tumor xenograft model.


Drug Metabolism and Disposition | 2013

The role of lymphatic transport on the systemic bioavailability of the Bcl-2 protein family inhibitors navitoclax (ABT-263) and ABT-199.

Edna F. Choo; Jason Boggs; Chunqiang Zhu; Joseph W. Lubach; Nathaniel D. Catron; Gary J. Jenkins; Andrew J. Souers; Richard Voorman

Navitoclax (ABT-263), a Bcl-2 family inhibitor and ABT-199, a Bcl-2 selective inhibitor, are high molecular weight, high logP molecules that show low solubility in aqueous media. While these properties are associated with low oral bioavailability (F), both navitoclax and ABT-199 showed moderate F in preclinical species. The objective of the described study was to determine if lymphatic transport contributes to the systemic availability of navitoclax and ABT-199 in dogs. The intravenous pharmacokinetics of navitoclax and ABT-199 were determined in intact (noncannulated) dogs. In oral studies, tablets (100 mg) of navitoclax and ABT-199 were administered to both intact and thoracic lymph duct–cannulated (TDC) dogs. The clearance of navitoclax and ABT-199 was low; 0.673 and 0.779 ml/min per kilogram, respectively. The volume of distribution of both compounds was low (0.5-0.7 l/kg). The half-lives of navitoclax and ABT-199 were 22.2 and 12.9 hours, respectively. The F of navitoclax and ABT-199 were 56.5 and 38.8%, respectively, in fed intact dogs. In fed TDC dogs, 13.5 and 4.67% of the total navitoclax and ABT-199 doses were observed in lymph with the % F of navitoclax and ABT-199 of 21.7 and 20.2%, respectively. The lower lymphatic transport of ABT-199 corresponds to the lower overall % F of ABT-199 versus navitoclax despite similar systemic availability via the portal vein (similar % F in TDC animals). This is consistent with the higher long chain triglyceride solubility of navitoclax (9.2 mg/ml) versus ABT-199 (2.2 mg/ml). In fasted TDC animals, lymph transport of navitoclax and ABT-199 decreased by 1.8-fold and 10-fold, respectively.


Bioorganic & Medicinal Chemistry Letters | 2014

Identification of substituted 3-hydroxy-2-mercaptocyclohex-2-enones as potent inhibitors of human lactate dehydrogenase.

Peter S. Dragovich; Benjamin P. Fauber; Jason Boggs; Jinhua Chen; Laura Corson; Charles Z. Ding; Charles Eigenbrot; HongXiu Ge; Anthony M. Giannetti; Thomas Hunsaker; Sharada Labadie; C Li; Yichin Liu; Shuguang Ma; Shiva Malek; David Peterson; Keith Pitts; Hans E. Purkey; Kirk Robarge; Laurent Salphati; Steven Sideris; Mark Ultsch; Erica VanderPorten; J Wang; Binqing Wei; Qing Xu; Ivana Yen; Qin Yue; Huihui Zhang; Xuying Zhang

A novel class of 3-hydroxy-2-mercaptocyclohex-2-enone-containing inhibitors of human lactate dehydrogenase (LDH) was identified through a high-throughput screening approach. Biochemical and surface plasmon resonance experiments performed with a screening hit (LDHA IC50=1.7 μM) indicated that the compound specifically associated with human LDHA in a manner that required simultaneous binding of the NADH co-factor. Structural variation of this screening hit resulted in significant improvements in LDHA biochemical inhibition activity (best IC50=0.18 μM). Two crystal structures of optimized compounds bound to human LDHA were obtained and explained many of the observed structure-activity relationships. In addition, an optimized inhibitor exhibited good pharmacokinetic properties after oral administration to rats (F=45%).


Drug Metabolism and Disposition | 2012

Preclinical Disposition of GDC-0973 and Prospective and Retrospective Analysis of Human Dose and Efficacy Predictions

Edna F. Choo; Marcia Belvin; Jason Boggs; Yuzhong Deng; Klaus P. Hoeflich; Justin Ly; Mark Merchant; Christine Orr; Emile Plise; Kirk Robarge; Jean Francois Martini; Robert Kassees; Ron G Aoyama; Atulkumar Ramaiya; Stuart Johnston

[3,4-Difluoro-2-(2-fluoro-4-iodo-phenylamino)-phenyl]-((S)-3-hydroxy-3-piperidin-2-yl-azetidin-1-yl)-methanone (GDC-0973) is a potent and highly selective inhibitor of mitogen-activated protein kinase(MAPK)/extracellular signal-regulated kinase (ERK) 1/2 (MEK1/2), a MAPK kinase that activates ERK1/2. The objectives of these studies were to characterize the disposition of GDC-0973 in preclinical species and to determine the relationship of GDC-0973 plasma concentrations to efficacy in Colo205 mouse xenograft models. The clearance (CL) of GDC-0973 was moderate in mouse (33.5 ml · min−1 · kg−1), rat (37.9 ± 7.2 ml · min−1 · kg−1), and monkey (29.6 ± 8.5 ml · min−1 · kg−1). CL in dog was low (5.5 ± 0.3 ml · min−1 · kg−1). The volume of distribution across species was large, 6-fold to 15-fold body water; half-lives ranged from 4 to 13 h. Protein binding in mouse, rat, dog, monkey, and human was high, with percentage unbound, 1 to 6%. GDC-0973-related radioactivity was rapidly and extensively distributed to tissues; however, low concentrations were observed in the brain. In rats and dogs, [14C]GDC-0973 was well absorbed (fraction absorbed, 70–80%). The majority of [14C]GDC-0973-related radioactivity was recovered in the bile of rat (74–81%) and dog (65%). The CL and volume of distribution of GDC-0973 in human, predicted by allometry, was 2.9 ml · min−1 · kg−1 and 9.9 l/kg, respectively. The predicted half-life was 39 h. To characterize the relationship between plasma concentration of GDC-0973 and tumor growth inhibition, pharmacokinetic-pharmacodynamic modeling was applied using an indirect response model. The KC50 value for tumor growth inhibition in Colo205 xenografts was estimated to be 0.389 μM, and the predicted clinical efficacious dose was ∼10 mg. Taken together, these data are useful in assessing the disposition of GDC-0973, and where available, comparisons with human data were made.


Toxicologic Pathology | 2016

Tankyrase Inhibition Causes Reversible Intestinal Toxicity in Mice with a Therapeutic Index < 1

Yu Zhong; Paula Katavolos; Trung Nguyen; Ted Lau; Jason Boggs; Amy Sambrone; David Kan; Mark Merchant; Eric Harstad; Mike Costa; Melissa Schutten

Activated Wnt/β-catenin signaling is frequently associated with colorectal cancer. Wnt inhibitors, including tankyrase inhibitors, are being explored as potential anticancer agents. Wnt signaling is also critical for intestinal tissue homeostasis, and Wnt inhibitors have been shown to cause intestinal toxicity in mice by affecting intestinal stem cells. This study sought to characterize the intestinal toxicity of tankyrase inhibitors, including reversibility, and to assess their therapeutic index. Novel tankyrase inhibitor G-631 caused dose-dependent intestinal toxicity with a therapeutic index < 1 after 14 days of dosing in mice. At a tolerated subtherapeutic dose level, the intestinal toxicity was composed of enteritis characterized by villus blunting, epithelial degeneration, and inflammation, which fully reversed after 14 days of recovery. Doubled exposure showed weak antitumor activity in a xenograft colorectal cancer model but also caused more severe intestinal toxicity characterized by multifocal-regionally extensive necrotizing and ulcerative enteritis leading to morbidity or moribundity in some animals. This toxicity was only partially reversed after 14 days of recovery, with evidence of crypt and villus regeneration, mildly blunted villi, and/or scarring in association with chronic inflammation of the submucosa. Therefore, the clinical utility of tankyrase inhibitors is likely limited by the on-target intestinal toxicity and a therapeutic index < 1 in mice.


Xenobiotica | 2010

Preclinical disposition and pharmacokinetics-pharmacodynamic modeling of biomarker response and tumour growth inhibition in xenograft mouse models of G-573, a MEK inhibitor

Edna F. Choo; Marcia Belvin; Jocelyn Chan; Klaus P. Hoeflich; Christine Orr; Kirk Robarge; Xiaoye Yang; Mark Zak; Jason Boggs

The mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK) pathway is a key signalling pathway that regulates cell proliferation. G-573 is an allosteric inhibitor of MEK that is both potent and selective. The objectives of these studies were to characterize the disposition of G-573 in preclinical species and to determine the relationship of G-573 plasma concentrations to pERK (phosphorylated ERK) and to tumour growth inhibition in HCT116 and H2122 mouse xenograft models. The clearance of G-573 was low in mouse (7.7 ml/min/kg), rat (2.24 ml/min/kg), dog (10 ml/min/kg), and cynomolgus monkey (0.754 ml/min/kg) while volumes of distribution (0.114–1.77 l/kg) was low to moderate, resulting in moderate half-lives across species (~2–9 h). Indirect response models were used to characterize the relationship between plasma concentration of G-573 to both pERK inhibition and tumour growth inhibition. The IC50 value for pERK inhibition in HCT116 tumours by G-573 was estimated to be 0.406 μM. The IC50 values for tumour growth inhibition in HCT116 and H2122 were estimated to be 3.43 and 2.56 μM, respectively. ED50 estimates in HCT116 and H2122 mouse xenograft models were estimated to be ~4.6 and 1.9 mg/kg/day, respectively. The information from these studies provides useful information when characterizing candidates for potential further clinical testing.

Collaboration


Dive into the Jason Boggs's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony M. Giannetti

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge