Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason C. Tanny is active.

Publication


Featured researches published by Jason C. Tanny.


Cell | 1999

An Enzymatic Activity in the Yeast Sir2 Protein that Is Essential for Gene Silencing

Jason C. Tanny; Gustave J Dowd; Julie Huang; Helmuth Hilz; Danesh Moazed

Despite its conservation in organisms from bacteria to human and its general requirement for transcriptional silencing in yeast, the function of the Sir2 protein is unknown. Here we show that Sir2 can transfer labeled phosphate from nicotinamide adenine dinucleotide to itself and histones in vitro. A modified form of Sir2, which results from its automodification activity, is specifically recognized by anti-mono-ADP-ribose antibodies, suggesting that Sir2 is an ADP-ribosyltransferase. Mutation of a phylogenetically invariant histidine residue in Sir2 abolishes both its enzymatic activity in vitro and its silencing functions in vivo. However, the mutant protein is associated with chromatin and other silencing factors in a manner similar to wild-type Sir2. These findings suggest that Sir2 contains an ADP-ribosyltransferase activity that is essential for its silencing function.


Molecular and Cellular Biology | 2002

Steps in Assembly of Silent Chromatin in Yeast: Sir3-Independent Binding of a Sir2/Sir4 Complex to Silencers and Role for Sir2-Dependent Deacetylation

Georg J. Hoppe; Jason C. Tanny; Adam D. Rudner; Scott A. Gerber; Steven P. Gygi; Danesh Moazed

ABSTRACT Transcriptional silencing at the budding yeast silent mating type (HM) loci and telomeric DNA regions requires Sir2, a conserved NAD-dependent histone deacetylase, Sir3, Sir4, histones H3 and H4, and several DNA-binding proteins. Silencing at the yeast ribosomal DNA (rDNA) repeats requires a complex containing Sir2, Net1, and Cdc14. Here we show that the native Sir2/Sir4 complex is composed solely of Sir2 and Sir4 and that native Sir3 is not associated with other proteins. We further show that the initial binding of the Sir2/Sir4 complex to DNA sites that nucleate silencing, accompanied by partial Sir2-dependent histone deacetylation, occurs independently of Sir3 and is likely to be the first step in assembly of silent chromatin at the HM loci and telomeres. The enzymatic activity of Sir2 is not required for this initial binding, but is required for the association of silencing proteins with regions distal from nucleation sites. At the rDNA repeats, we show that histone H3 and H4 tails are required for silencing and rDNA-associated H4 is hypoacetylated in a Sir2-dependent manner. However, the binding of Sir2 to rDNA is independent of its histone deacetylase activity. Together, these results support a stepwise model for the assembly of silent chromatin domains in Saccharomyces cerevisiae.


Cell | 2005

Assembly of the SIR Complex and Its Regulation by O-Acetyl-ADP-Ribose, a Product of NAD-Dependent Histone Deacetylation

Gunn-Guang Liou; Jason C. Tanny; Ryan G. Kruger; Thomas Walz; Danesh Moazed

Assembly of silent chromatin domains in budding yeast involves the deacetylation of histone tails by Sir2 and the association of the Sir3 and Sir4 proteins with hypoacetylated histone tails. Sir2 couples deacetylation to NAD hydrolysis and the synthesis of a metabolite, O-acetyl-ADP-ribose (AAR), but the functional significance of NAD hydrolysis or AAR, if any, is unknown. Here we examine the association of the Sir2, Sir3, and Sir4 proteins with each other and histone tails. Our analysis reveals that deacetylation of histone H4-lysine 16 (K16), which is critical for silencing in vivo, is also critical for the binding of Sir3 and Sir4 to histone H4 peptides in vitro. Moreover, AAR itself promotes the association of multiple copies of Sir3 with Sir2/Sir4 and induces a dramatic structural rearrangement in the SIR complex. These results suggest that Sir2 activity modulates the assembly of the SIR complex through both histone deacetylation and AAR synthesis.


Molecular and Cellular Biology | 2005

Components of the ESCRT Pathway, DFG16, and YGR122w Are Required for Rim101 To Act as a Corepressor with Nrg1 at the Negative Regulatory Element of the DIT1 Gene of Saccharomyces cerevisiae

Karen Rothfels; Jason C. Tanny; Enikö Molnar; Helena Friesen; Cosimo Commisso; Jacqueline Segall

ABSTRACT The divergently transcribed DIT1 and DIT2 genes of Saccharomyces cerevisiae, which belong to the mid-late class of sporulation-specific genes, are subject to Ssn6-Tup1-mediated repression in mitotic cells. The Ssn6-Tup1 complex, which is required for repression of diverse sets of coordinately regulated genes, is known to be recruited to target genes by promoter-specific DNA-binding proteins. In this study, we show that a 42-bp negative regulatory element (NRE) present in the DIT1-DIT2 intergenic region consists of two distinct subsites and that a multimer of each subsite supports efficient Ssn6-Tup1-dependent repression of a CYC1-lacZ reporter gene. By genetic screening procedures, we identified DFG16, YGR122w, VPS36, and the DNA-binding proteins Rim101 and Nrg1 as potential mediators of NRE-directed repression. We show that Nrg1 and Rim101 bind simultaneously to adjacent target sites within the NRE in vitro and act as corepressors in vivo. We have found that the ability of Rim101 to be proteolytically processed to its active form and mediate NRE-directed repression not only depends on the previously characterized RIM signaling pathway but also requires Dfg16, Ygr122w, and components of the ESCRT trafficking pathway. Interestingly, Rim101 was processed in bro1 and doa4 strains but was unable to mediate efficient repression.


Molecular and Cellular Biology | 2004

Budding Yeast Silencing Complexes and Regulation of Sir2 Activity by Protein-Protein Interactions

Jason C. Tanny; Donald S. Kirkpatrick; Scott A. Gerber; Steven P. Gygi; Danesh Moazed

ABSTRACT Gene silencing in the budding yeast Saccharomyces cerevisiae requires the enzymatic activity of the Sir2 protein, a highly conserved NAD-dependent deacetylase. In order to study the activity of native Sir2, we purified and characterized two budding yeast Sir2 complexes: the Sir2/Sir4 complex, which mediates silencing at mating-type loci and at telomeres, and the RENT complex, which mediates silencing at the ribosomal DNA repeats. Analyses of the protein compositions of these complexes confirmed previously described interactions. We show that the assembly of Sir2 into native silencing complexes does not alter its selectivity for acetylated substrates, nor does it allow the deacetylation of nucleosomal histones. The inability of Sir2 complexes to deacetylate nucleosomes suggests that additional factors influence Sir2 activity in vivo. In contrast, Sir2 complexes show significant enhancement in their affinities for acetylated substrates and their sensitivities to the physiological inhibitor nicotinamide relative to recombinant Sir2. Reconstitution experiments showed that, for the Sir2/Sir4 complex, these differences stem from the physical interaction of Sir2 with Sir4. Finally, we provide evidence that the different nicotinamide sensitivities of Sir2/Sir4 and RENT in vitro could contribute to locus-specific differences in how Sir2 activity is regulated in vivo.


Structure | 2003

Structure of the Coiled-Coil Dimerization Motif of Sir4 and Its Interaction with Sir3

Ju-Fang Chang; Brian E. Hall; Jason C. Tanny; Danesh Moazed; David J. Filman; Tom Ellenberger

The yeast silent information regulators Sir2, Sir3, and Sir4 physically interact with one another to establish a transcriptionally silent state by forming repressive chromatin structures. The Sir4 protein contains binding sites for both Sir2 and Sir3, and these protein-protein interactions are required for gene silencing. Here, we report the X-ray structure of the coiled-coil dimerization motif within the C-terminus of Sir4 and show that it forms a stable 1:1 complex with a dimeric fragment of Sir3 (residues 464-978). We have identified a cluster of residues on the surface of the Sir4 coiled coil required for specific interactions with Sir3. The histone deacetylase Sir2 can also bind to this complex, forming a ternary complex with the truncated Sir3 and Sir4 proteins. The dual interactions of Sir4 with Sir3 and Sir2 suggest a physical basis for recruiting Sir3 to chromatin by virtue of its interactions with Sir4 and with deacetylated histones in chromatin.


Genetics | 2006

New Alleles of SIR2 Define Cell-Cycle-Specific Silencing Functions

Mirela Matecic; Kristen Martins-Taylor; Merrit Hickman; Jason C. Tanny; Danesh Moazed; Scott G. Holmes

The establishment of transcriptional silencing in yeast requires cell-cycle progression, but the nature of this requirement is unknown. Sir2 is a protein deacetylase that is required for gene silencing in yeast. We have used temperature-sensitive alleles of the SIR2 gene to assess Sir2s contribution to silencing as a function of the cell cycle. When examined in vivo, these conditional alleles fall into two classes: one class exhibits a loss of silencing when raised to the nonpermissive temperature regardless of cell-cycle position, while the second class exhibits a mitosis-specific silencing defect. Alleles of the first class have a primary defect in protein deacetylase activity, while the alleles of the second class are specifically defective in Sir2–Sir4 interactions at nonpermissive temperatures. Using a SIR2 temperature-sensitive allele, we show that silencing can be established at the HML locus during progression through the G2/M–G1 interval. These results suggest that yeast heterochromatin undergoes structural transitions as a function of the cell cycle and support the existence of a critical assembly step for silent chromatin in mitosis.


Structure | 2002

Recognition of acetylated proteins: lessons from an ancient family of enzymes.

Jason C. Tanny; Danesh Moazed

The structure of a Sir2-like enzyme in complex with an acetylated peptide substrate has been solved, and provides the first glimpse into the mechanism of substrate recognition by this highly conserved family of enzymes.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Coupling of histone deacetylation to NAD breakdown by the yeast silencing protein Sir2: Evidence for acetyl transfer from substrate to an NAD breakdown product

Jason C. Tanny; Danesh Moazed


Novartis Foundation symposium | 2008

A model for step-wise assembly of heterochromatin in yeast.

Danesh Moazed; Adam D. Rudner; Julie Huang; Georg J. Hoppe; Jason C. Tanny

Collaboration


Dive into the Jason C. Tanny's collaboration.

Top Co-Authors

Avatar

Danesh Moazed

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge