Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason Cameron is active.

Publication


Featured researches published by Jason Cameron.


Biochimica et Biophysica Acta | 2013

Albumin as a versatile platform for drug half-life extension.

Darrell Sleep; Jason Cameron; Leslie Evans

BACKGROUND Albumin is the most abundant plasma protein, is highly soluble, very stable and has an extraordinarily long circulatory half-life as a direct result of its size and interaction with the FcRn mediated recycling pathway. In contrast, many therapeutic molecules are smaller than the renal filtration threshold and are rapidly lost from the circulation thereby limiting their therapeutic potential. Albumin can be used in a variety of ways to increase the circulatory half-life of such molecules. SCOPE OF REVIEW This article will review the mechanisms which underpin albumins extraordinarily long circulatory half-life and how the understanding of these processes are currently being employed to extend the circulatory half-life of drugs which can be engineered to bind to albumin, or are conjugated to, or genetically fused to, albumin. MAJOR CONCLUSIONS The recent and growing understanding of the pivotal role of FcRn in maintaining the extended circulatory half-life of albumin will necessitate a greater and more thorough investigation of suitable pre-clinical model systems for assessing the pharmacokinetic profiles of drugs associated, conjugated or fused to albumin. GENERAL SIGNIFICANCE Association, conjugation or fusion of therapeutic drugs to albumin is a well-accepted and established half-life extension technology. The manipulation of the albumin-FcRn interaction will facilitate the modulation of the circulatory half-life of albumin-enabled drugs, leading to superior pharmacokinetics tailored to the disease state and increased patient compliance. This article is part of a Special Issue entitled Serum Albumin.


Nature Communications | 2012

Structure-based mutagenesis reveals the albumin-binding site of the neonatal Fc receptor

Jan Terje Andersen; Bjørn Dalhus; Jason Cameron; Muluneh Bekele Daba; Andrew Plumridge; Leslie Evans; Stephan O. Brennan; Kristin Støen Gunnarsen; Magnar Bjørås; Darrell Sleep; Inger Sandlie

Albumin is the most abundant protein in blood where it has a pivotal role as a transporter of fatty acids and drugs. Like IgG, albumin has long serum half-life, protected from degradation by pH-dependent recycling mediated by interaction with the neonatal Fc receptor, FcRn. Although the FcRn interaction with IgG is well characterized at the atomic level, its interaction with albumin is not. Here we present structure-based modelling of the FcRn–albumin complex, supported by binding analysis of site-specific mutants, providing mechanistic evidence for the presence of pH-sensitive ionic networks at the interaction interface. These networks involve conserved histidines in both FcRn and albumin domain III. Histidines also contribute to intramolecular interactions that stabilize the otherwise flexible loops at both the interacting surfaces. Molecular details of the FcRn–albumin complex may guide the development of novel albumin variants with altered serum half-life as carriers of drugs.


Journal of Biological Chemistry | 2014

Extending Serum Half-life of Albumin by Engineering Neonatal Fc Receptor (FcRn) Binding

Jan Terje Andersen; Bjørn Dalhus; Dorthe Viuff; Birgitte Thue Ravn; Kristin Støen Gunnarsen; Andrew Plumridge; Karen A. Bunting; Filipa Antunes; Rebecca Williamson; Steven Athwal; Elizabeth Allan; Leslie Evans; Magnar Bjørås; Søren Kjærulff; Darrell Sleep; Inger Sandlie; Jason Cameron

Background: FcRn controls the long serum half-life of albumin. Results: A single amino acid substitution of albumin considerably improved binding to FcRn and extended serum half-life in mice and rhesus monkeys. Conclusion: Serum half-life of albumin may be tailored by engineering the FcRn-albumin interaction. Significance: This study reports on engineered albumin that may be attractive for improving the serum half-life of biopharmaceuticals. A major challenge for the therapeutic use of many peptides and proteins is their short circulatory half-life. Albumin has an extended serum half-life of 3 weeks because of its size and FcRn-mediated recycling that prevents intracellular degradation, properties shared with IgG antibodies. Engineering the strictly pH-dependent IgG-FcRn interaction is known to extend IgG half-life. However, this principle has not been extensively explored for albumin. We have engineered human albumin by introducing single point mutations in the C-terminal end that generated a panel of variants with greatly improved affinities for FcRn. One variant (K573P) with 12-fold improved affinity showed extended serum half-life in normal mice, mice transgenic for human FcRn, and cynomolgus monkeys. Importantly, favorable binding to FcRn was maintained when a single-chain fragment variable antibody was genetically fused to either the N- or the C-terminal end. The engineered albumin variants may be attractive for improving the serum half-life of biopharmaceuticals.


Protein Expression and Purification | 2010

The production, characterisation and enhanced pharmacokinetics of scFv–albumin fusions expressed in Saccharomyces cerevisiae

Leslie Evans; Miranda Hughes; Joanne Waters; Jason Cameron; Neil Dodsworth; David Tooth; Anthony Greenfield; Darrell Sleep

An expression system is described for the production of monomeric scFvs and scFv antibody fragments genetically fused to human albumin (at either the N- or C-terminus or both). Based upon strains of Saccharomyces cerevisiae originally developed for the production of a recombinant human albumin (Recombumin) this system has delivered high levels of secreted product into the supernatant of shake flask and high cell density fed-batch fermentations. Specific binding to the corresponding ligand was demonstrated for each of the scFvs and scFv-albumin fusions and pharmacokinetic studies showed that the fusion products had greatly extended circulatory half-lives. The system described provides an attractive alternative to other microbial systems for the manufacture of this type of product.


Journal of Biological Chemistry | 2013

Single-chain Variable Fragment Albumin Fusions Bind the Neonatal Fc Receptor (FcRn) in a Species-dependent Manner IMPLICATIONS FOR IN VIVO HALF-LIFE EVALUATION OF ALBUMIN FUSION THERAPEUTICS

Jan Terje Andersen; Jason Cameron; Andrew Plumridge; Leslie Evans; Darrell Sleep; Inger Sandlie

Background: Albumin is utilized as carrier of biopharmaceuticals. FcRn binding regulates its long half-life. Results: ScFv fusion to HSA only slightly reduces human FcRn binding, whereas HSA and scFv-HSA fusions have very weak binding to rodent FcRn. Conclusion: Rodents have limitations for preclinical evaluation of HSA fusions. Significance: We illuminate design of HSA fusions and highlight cross-species differences to consider prior to preclinical evaluation. Albumin has a serum half-life of 3 weeks in humans. This has been utilized to extend the serum persistence of biopharmaceuticals that are fused to albumin. In light of the fact that the neonatal Fc receptor (FcRn) is a key regulator of albumin homeostasis, it is crucial to address how fusion of therapeutics to albumin impacts binding to FcRn. Here, we report on a detailed molecular investigation on how genetic fusion of a short peptide or an single-chain variable fragment (scFv) fragment to human serum albumin (HSA) influences pH-dependent binding to FcRn from mouse, rat, monkey, and human. We have found that fusion to the N- or C-terminal end of HSA only slightly reduces receptor binding, where the most noticeable effect is seen after fusion to the C-terminal end. Furthermore, in contrast to the observed strong binding to human and monkey FcRn, HSA and all HSA fusions bound very poorly to mouse and rat versions of the receptor. Thus, we demonstrate that conventional rodents are limited as preclinical models for analysis of serum half-life of HSA-based biopharmaceuticals. This finding is explained by cross-species differences mainly found within domain III (DIII) of albumin. Our data demonstrate that although fusion, particularly to the C-terminal end, may slightly reduce the affinity for FcRn, HSA is versatile as a carrier of biopharmaceuticals.


Journal of Biological Chemistry | 2014

Dissection of the Neonatal Fc Receptor (FcRn)-Albumin Interface Using Mutagenesis and Anti-FcRn Albumin-blocking Antibodies

Kine Marita Knudsen Sand; Bjørn Dalhus; Gregory J. Christianson; Malin Bern; Stian Foss; Jason Cameron; Darrell Sleep; Magnar Bjørås; Derry C. Roopenian; Inger Sandlie; Jan Terje Andersen

Background: Albumin has a long serum half-life, which is regulated by FcRn. Results: A cluster of conserved tryptophan residues of FcRn is required for binding to albumin and anti-FcRn albumin blocking antibodies. Conclusion: The FcRn-albumin interaction is pH-dependent but hydrophobic in nature. Significance: This study provides mechanistic insight into how FcRn binds albumin and regulates its long half-life. Albumin is the most abundant protein in blood and plays a pivotal role as a multitransporter of a wide range of molecules such as fatty acids, metabolites, hormones, and toxins. In addition, it binds a variety of drugs. Its role as distributor is supported by its extraordinary serum half-life of 3 weeks. This is related to its size and binding to the cellular receptor FcRn, which rescues albumin from intracellular degradation. Furthermore, the long half-life has fostered a great and increasing interest in utilization of albumin as a carrier of protein therapeutics and chemical drugs. However, to fully understand how FcRn acts as a regulator of albumin homeostasis and to take advantage of the FcRn-albumin interaction in drug design, the interaction interface needs to be dissected. Here, we used a panel of monoclonal antibodies directed towards human FcRn in combination with site-directed mutagenesis and structural modeling to unmask the binding sites for albumin blocking antibodies and albumin on the receptor, which revealed that the interaction is not only strictly pH-dependent, but predominantly hydrophobic in nature. Specifically, we provide mechanistic evidence for a crucial role of a cluster of conserved tryptophan residues that expose a pH-sensitive loop of FcRn, and identify structural differences in proximity to these hot spot residues that explain divergent cross-species binding properties of FcRn. Our findings expand our knowledge of how FcRn is controlling albumin homeostasis at a molecular level, which will guide design and engineering of novel albumin variants with altered transport properties.


Journal of Biological Chemistry | 2014

Interaction with Both Domain I and III of Albumin Is Required for Optimal pH-dependent Binding to the Neonatal Fc Receptor (FcRn)

Kine Marita Knudsen Sand; Malin Bern; Jeannette Nilsen; Bjørn Dalhus; Kristin Støen Gunnarsen; Jason Cameron; Algirdas Grevys; Karen A. Bunting; Inger Sandlie; Jan Terje Andersen

Background: FcRn regulates the long serum half-life of albumin. Results: The C-terminal DIII of HSA is the principal domain for FcRn binding, whereas two loops in DI at the N terminus modulate the interaction. Conclusion: DI of albumin contributes to optimal FcRn binding. Significance: We highlight the importance of DI for pH-dependent binding to FcRn. Albumin is an abundant blood protein that acts as a transporter of a plethora of small molecules like fatty acids, hormones, toxins, and drugs. In addition, it has an unusual long serum half-life in humans of nearly 3 weeks, which is attributed to its interaction with the neonatal Fc receptor (FcRn). FcRn protects albumin from intracellular degradation via a pH-dependent cellular recycling mechanism. To understand how FcRn impacts the role of albumin as a distributor, it is of importance to unravel the structural mechanism that determines pH-dependent binding. Here, we show that although the C-terminal domain III (DIII) of human serum albumin (HSA) contains the principal binding site, the N-terminal domain I (DI) is important for optimal FcRn binding. Specifically, structural inspection of human FcRn (hFcRn) in complex with HSA revealed that two exposed loops of DI were in proximity with the receptor. To investigate to what extent these contacts affected hFcRn binding, we targeted selected amino acid residues of the loops by mutagenesis. Screening by in vitro interaction assays revealed that several of the engineered HSA variants showed decreased binding to hFcRn, which was also the case for two missense variants with mutations within these loops. In addition, four of the variants showed improved binding. Our findings demonstrate that both DI and DIII are required for optimal binding to FcRn, which has implications for our understanding of the FcRn-albumin relationship and how albumin acts as a distributor. Such knowledge may inspire development of novel HSA-based diagnostics and therapeutics.


Journal of Controlled Release | 2016

Generation of a double transgenic humanized neonatal Fc receptor (FcRn)/albumin mouse to study the pharmacokinetics of albumin-linked drugs.

Dorthe Viuff; Filipa Antunes; Leslie Evans; Jason Cameron; Hans Dyrnesli; Birgitte Thue Ravn; Magnus Stougaard; Kader Thiam; Birgitte Andersen; Søren Kjærulff; Kenneth A. Howard

Human serum albumin (HSA) is a natural carrier protein possessing multiple ligand binding sites with a plasma half-life ~19days, facilitated by interaction with the human neonatal Fc receptor (FcRn), that promotes it as a highly attractive drug delivery technology. A lack of adequate rodent models, however, is a major challenge in the preclinical development of albumin-linked therapeutics. This work describes the first double transgenic mouse model bearing both human FcRn and HSA genes (hFcRn(+/+), hAlb(+/+)) under the control of an endogenous promoter. Human FcRn was shown by immunohistochemical and qPCR analysis to be ubiquitously expressed in the major organs. Physiological levels of HSA were detected in the blood that exhibited similar FcRn binding kinetics to recombinant or human serum-derived HSA. The circulatory half-life (t1/2) was shown to be dependent on FcRn binding affinity that increased from low affinity (t1/2 29h), to wild type (t1/2 50h), to high affinity (t1/2 80h) variants, that validates the application of the model for optimizing the pharmacokinetics of drug carriers whos circulatory half-life is dependent in some manner upon interaction with endogenous FcRn. This study presents a novel mouse model that better mimics the human physiological conditions and, thus, has potential wide applications in the development of albumin-linked drugs or conventional drugs whose action is influenced by reversible binding to endogenous HSA.


Journal of Controlled Release | 2016

An albumin-mediated cholesterol design-based strategy for tuning siRNA pharmacokinetics and gene silencing

Konrad Bienk; Michael Lykke Hvam; Malgorzata M. Pakula; Frederik Dagnæs-Hansen; Jesper Wengel; Birgitte M. Malle; Ulrich Kragh-Hansen; Jason Cameron; Jens Thostrup Bukrinski; Kenneth A. Howard

Major challenges for the clinical translation of small interfering RNA (siRNA) include overcoming the poor plasma half-life, site-specific delivery and modulation of gene silencing. In this work, we exploit the intrinsic transport properties of human serum albumin to tune the blood circulatory half-life, hepatic accumulation and gene silencing; based on the number of siRNA cholesteryl modifications. We demonstrate by a gel shift assay a strong and specific affinity of recombinant human serum albumin (rHSA) towards cholesteryl-modified siRNA (Kd>1×10(-7)M) dependent on number of modifications. The rHSA/siRNA complex exhibited reduced nuclease degradation and reduced induction of TNF-α production by human peripheral blood mononuclear cells. The increased solubility of heavily cholesteryl modified siRNA in the presence of rHSA facilitated duplex annealing and consequent interaction that allowed in vivo studies using multiple cholesteryl modifications. A structural-activity-based screen of in vitro EGFP-silencing was used to select optimal siRNA designs containing cholesteryl modifications within the sense strand that were used for in vivo studies. We demonstrate plasma half-life extension in NMRI mice from t1/2 12min (naked) to t1/2 45min (single cholesteryl) and t1/2 71min (double cholesteryl) using fluorescent live bioimaging. The biodistribution showed increased accumulation in the liver for the double cholesteryl modified siRNA that correlated with an increase in hepatic Factor VII gene silencing of 28% (rHSA/siRNA) compared to 4% (naked siRNA) 6days post-injection. This work presents a novel albumin-mediated cholesteryl design-based strategy for tuning pharmacokinetics and systemic gene silencing.


Molecular Pharmaceutics | 2016

Neonatal Fc Receptor Binding Tolerance toward the Covalent Conjugation of Payloads to Cysteine 34 of Human Albumin Variants

Steffan S. Petersen; Eva Kläning; Morten Frendø Ebbesen; Birgitte Andersen; Jason Cameron; Esben S. Sørensen; Kenneth A. Howard

The long circulatory half-life of albumin facilitated by the interaction with the cellular recycling neonatal Fc receptor (FcRn) is utilized for drug half-life extension. FcRn engagement effects following covalent attachment of cargo to cysteine 34, however, have not been investigated. Poly(ethylene glycol) polymers were used to study the influence of cargo molecular weight on human FcRn engagement of recombinant wild type (WT) albumin and an albumin variant engineered for increased FcRn binding. Decreased affinity was observed for all conjugates; however, the engineered albumin maintained an affinity above that of unmodified wild type albumin that promotes it as an attractive drug delivery platform.

Collaboration


Dive into the Jason Cameron's collaboration.

Top Co-Authors

Avatar

Darrell Sleep

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leslie Evans

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge