Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason D. Fowler is active.

Publication


Featured researches published by Jason D. Fowler.


Journal of Biological Chemistry | 2008

Kinetic investigation of the inhibitory effect of gemcitabine on DNA polymerization catalyzed by human mitochondrial DNA polymerase

Jason D. Fowler; Jessica A. Brown; Kenneth A. Johnson; Zucai Suo

Gemcitabine, 2′-deoxy-2′, 2′-difluorocytidine (dFdC), is a drug approved for use against various solid tumors. Clinically, this moderately toxic nucleoside analog causes peripheral neuropathy, hematological dysfunction, and pulmonary toxicity in cancer patients. Although these side effects closely mimic symptoms of mitochondrial dysfunction, there is no direct evidence to show gemcitabine interferes with mitochondrial DNA replication catalyzed by human DNA polymerase γ. Here we employed presteady state kinetic methods to directly investigate the incorporation of the 5′-triphosphorylated form of gemcitabine (dFdCTP), the excision of the incorporated monophosphorylated form (dFdCMP), and the bypass of template base dFdC catalyzed by human DNA polymerase γ. Opposite template base dG, dFdCTP was incorporated with a 432-fold lower efficiency than dCTP. Although dFdC is not a chain terminator, the incorporated dFdCMP decreased the incorporation efficiency of the next 2 correct nucleotides by 214- and 7-fold, respectively. Moreover, the primer 3′-dFdCMP was excised with a 50-fold slower rate than the matched 3′-dCMP. When dFdC was encountered as a template base, DNA polymerase γ paused at the lesion and one downstream position but eventually elongated the primer to full-length product. These pauses were because of a 1,000-fold decrease in nucleotide incorporation efficiency. Interestingly, the polymerase fidelity at these pause sites decreased by 2 orders of magnitude. Thus, our pre-steady state kinetic studies provide direct evidence demonstrating the inhibitory effect of gemcitabine on the activity of human mitochondrial DNA polymerase.


Journal of Biological Chemistry | 2009

Mechanistic Studies of the Bypass of a Bulky Single-base Lesion Catalyzed by a Y-family DNA Polymerase

Shanen M. Sherrer; Jessica A. Brown; Lindsey R. Pack; Vijay P. Jasti; Jason D. Fowler; Ashis K. Basu; Zucai Suo

1-Nitropyrene, the most abundant nitro polycyclic aromatic hydrocarbon in diesel emissions, has been found to react with DNA to form predominantly N-(deoxyguanosin-8-yl)-1-aminopyrene (dGAP). This bulky adduct has been shown to induce genetic mutations, which may implicate Y-family DNA polymerases in its bypass in vivo. To establish a kinetic mechanism for the bypass of such a prototype single-base lesion, we employed pre-steady-state kinetic methods to investigate individual nucleotide incorporations upstream, opposite, and downstream from a site-specifically placed dGAP lesion catalyzed by Sulfolobus solfataricus DNA polymerase IV (Dpo4), a model Y-family DNA polymerase. Dpo4 was able to bypass dGAP but paused strongly at two sites: opposite the lesion and immediately downstream from the lesion. Both nucleotide incorporation efficiency and fidelity decreased significantly at the pause sites, especially during extension of the bypass product. Interestingly, a 4-fold tighter binding affinity of damaged DNA to Dpo4 promoted catalysis through putative interactions between the active site residues of Dpo4 and 1-aminopyrene moiety at the first pause site. In the presence of a DNA trap, the kinetics of nucleotide incorporation at these sites was biphasic in which a small, fast phase preceded a larger, slow phase. In contrast, only a large, fast phase was observed during nucleotide incorporation at non-pause sites. Our kinetic studies support a general kinetic mechanism for lesion bypass catalyzed by numerous DNA polymerases.


Antimicrobial Agents and Chemotherapy | 2011

Pre-steady-state kinetic analysis of the incorporation of anti-HIV nucleotide analogs catalyzed by human X- and Y-family DNA polymerases.

Jessica A. Brown; Lindsey R. Pack; Jason D. Fowler; Zucai Suo

ABSTRACT Nucleoside reverse transcriptase inhibitors (NRTIs) are an important class of antiviral drugs used to manage infections by human immunodeficiency virus, which causes AIDS. Unfortunately, these drugs cause unwanted side effects, and the molecular basis of NRTI toxicity is not fully understood. Putative routes of NRTI toxicity include the inhibition of human nuclear and mitochondrial DNA polymerases. A strong correlation between mitochondrial toxicity and NRTI incorporation catalyzed by human mitochondrial DNA polymerase has been established both in vitro and in vivo. However, it remains to be determined whether NRTIs are substrates for the recently discovered human X- and Y-family DNA polymerases, which participate in DNA repair and DNA lesion bypass in vivo. Using pre-steady-state kinetic techniques, we measured the substrate specificity constants for human DNA polymerases β, λ, η, ι, κ, and Rev1 incorporating the active, 5′-phosphorylated forms of tenofovir, lamivudine, emtricitabine, and zidovudine. For the six enzymes, all of the drug analogs were incorporated less efficiently (40- to >110,000-fold) than the corresponding natural nucleotides, usually due to a weaker binding affinity and a slower rate of incorporation for the incoming nucleotide analog. In general, the 5′-triphosphate forms of lamivudine and zidovudine were better substrates than emtricitabine and tenofovir for the six human enzymes, although the substrate specificity profile depended on the DNA polymerase. Our kinetic results suggest NRTI insertion catalyzed by human X- and Y-family DNA polymerases is a potential mechanism of NRTI drug toxicity, and we have established a structure-function relationship for designing improved NRTIs.


Nucleic Acids Research | 2011

Quantitative analysis of the efficiency and mutagenic spectra of abasic lesion bypass catalyzed by human Y-family DNA polymerases

Shanen M. Sherrer; Kevin A. Fiala; Jason D. Fowler; Sean A. Newmister; John M. Pryor; Zucai Suo

Higher eukaryotes encode various Y-family DNA polymerases to perform global DNA lesion bypass. To provide complete mutation spectra for abasic lesion bypass, we employed short oligonucleotide sequencing assays to determine the sequences of abasic lesion bypass products synthesized by human Y-family DNA polymerases eta (hPolη), iota (hPolι) and kappa (hPolκ). The fourth human Y-family DNA polymerase, Rev1, failed to generate full-length lesion bypass products after 3 h. The results indicate that hPolι generates mutations with a frequency from 10 to 80% during each nucleotide incorporation event. In contrast, hPolη is the least error prone, generating the fewest mutations in the vicinity of the abasic lesion and inserting dAMP with a frequency of 67% opposite the abasic site. While the error frequency of hPolκ is intermediate to those of hPolη and hPolι, hPolκ has the highest potential to create frameshift mutations opposite the abasic site. Moreover, the time (t50bypass) required to bypass 50% of the abasic lesions encountered by hPolη, hPolι and hPolκ was 4.6, 112 and 1 823 s, respectively. These t50bypass values indicate that, among the enzymes, hPolη has the highest abasic lesion bypass efficiency. Together, our data suggest that hPolη is best suited to perform abasic lesion bypass in vivo.


Biochemistry | 2010

Kinetic Basis of Sugar Selection by a Y-Family DNA Polymerase from Sulfolobus solfataricus P2

Shanen M. Sherrer; David C. Beyer; Cynthia X. Xia; Jason D. Fowler; Zucai Suo

DNA polymerases use either a bulky active site residue or a backbone segment to select against ribonucleotides in order to faithfully replicate cellular genomes. Here, we demonstrated that an active site mutation (Y12A) within Sulfolobus solfataricus DNA polymerase IV (Dpo4) caused an average increase of 220-fold in matched ribonucleotide incorporation efficiency and an average decrease of 9-fold in correct deoxyribonucleotide incorporation efficiency, leading to an average reduction of 2000-fold in sugar selectivity. Thus, the bulky side chain of Tyr12 is important for both ribonucleotide discrimination and efficient deoxyribonucleotide incorporation. Other than synthesizing DNA as the wild-type Dpo4, the Y12A Dpo4 mutant incorporated more than 20 consecutive ribonucleotides into primer/template (DNA/DNA) duplexes, suggesting that this mutant protein possesses both a DNA-dependent DNA polymerase activity and a DNA-dependent RNA polymerase activity. Moreover, the binary and ternary crystal structures of Dpo4 have revealed that this DNA lesion bypass polymerase can bind up to eight base pairs of double-stranded DNA which is entirely in B-type. Thus, the DNA binding cleft of Dpo4 is flexible and can accommodate both A- and B-type oligodeoxyribonucleotide duplexes as well as damaged DNA.


Journal of Physical Chemistry A | 2013

Direct Probing of Solvent Accessibility and Mobility at the Binding Interface of Polymerase (Dpo4)-DNA Complex

Yangzhong Qin; Yi Yang; Luyuan Zhang; Jason D. Fowler; Weihong Qiu; Lijuan Wang; Zucai Suo; Dongping Zhong

Water plays essential structural and dynamical roles in protein-DNA recognition through contributing to enthalpic or entropic stabilization of binding complex and by mediating intermolecular interactions and fluctuations for biological function. These interfacial water molecules are confined by the binding partners in nanospace, but in many cases they are highly mobile and exchange with outside bulk solution. Here, we report our studies of the interfacial water dynamics in the binary and ternary complexes of a polymerase (Dpo4) with DNA and an incoming nucleotide using a site-specific tryptophan probe with femtosecond resolution. By systematic comparison of the interfacial water motions and local side chain fluctuations in the apo, binary, and ternary states of Dpo4, we observed that the DNA binding interface and active site are dynamically solvent accessible and the interfacial water dynamics are similar to the surface hydration water fluctuations on picosecond time scales. Our molecular dynamics simulations also show the binding interface full of water molecules and nonspecific weak interactions. Such a fluid binding interface facilitates the polymerase sliding on DNA for fast translocation whereas the spacious and mobile hydrated active site contributes to the low fidelity of the lesion-bypass Y-family DNA polymerase.


Chemical Research in Toxicology | 2012

Identification of an Unfolding Intermediate for a DNA Lesion Bypass Polymerase

Shanen M. Sherrer; Brian A. Maxwell; Lindsey R. Pack; Kevin A. Fiala; Jason D. Fowler; Jun Zhang; Zucai Suo

Sulfolobus solfataricus DNA Polymerase IV (Dpo4), a prototype Y-family DNA polymerase, has been well characterized biochemically and biophysically at 37 °C or lower temperatures. However, the physiological temperature of the hyperthermophile S. solfataricus is approximately 80 °C. With such a large discrepancy in temperature, the in vivo relevance of these in vitro studies of Dpo4 has been questioned. Here, we employed circular dichroism spectroscopy and fluorescence-based thermal scanning to investigate the secondary structural changes of Dpo4 over a temperature range from 26 to 119 °C. Dpo4 was shown to display a high melting temperature characteristic of hyperthermophiles. Unexpectedly, the Little Finger domain of Dpo4, which is only found in the Y-family DNA polymerases, was shown to be more thermostable than the polymerase core. More interestingly, Dpo4 exhibited a three-state cooperative unfolding profile with an unfolding intermediate. The linker region between the Little Finger and Thumb domains of Dpo4 was found to be a source of structural instability. Through site-directed mutagenesis, the interactions between the residues in the linker region and the Palm domain were identified to play a critical role in the formation of the unfolding intermediate. Notably, the secondary structure of Dpo4 was not altered when the temperature was increased from 26 to 87.5 °C. Thus, in addition to providing structural insights into the thermal stability and an unfolding intermediate of Dpo4, our work also validated the relevance of the in vitro studies of Dpo4 performed at temperatures significantly lower than 80 °C.


Nucleic Acids Research | 2014

Structural and kinetic insights into binding and incorporation of L-nucleotide analogs by a Y-family DNA polymerase

Vineet Gaur; Rajan Vyas; Jason D. Fowler; Georgia Efthimiopoulos; Joy Y. Feng; Zucai Suo

Considering that all natural nucleotides (D-dNTPs) and the building blocks (D-dNMPs) of DNA chains possess D-stereochemistry, DNA polymerases and reverse transcriptases (RTs) likely possess strongD-stereoselectivity by preferably binding and incorporating D-dNTPs over unnatural L-dNTPs during DNA synthesis. Surprisingly, a structural basis for the discrimination against L-dNTPs by DNA polymerases or RTs has not been established although L-deoxycytidine analogs (lamivudine and emtricitabine) and L-thymidine (telbivudine) have been widely used as antiviral drugs for years. Here we report seven high-resolution ternary crystal structures of a prototype Y-family DNA polymerase, DNA, and D-dCTP, D-dCDP, L-dCDP, or the diphosphates and triphosphates of lamivudine and emtricitabine. These structures reveal that relative to D-dCTP, each of these L-nucleotides has its sugar ring rotated by 180° with an unusual O4′-endo sugar puckering and exhibits multiple triphosphate-binding conformations within the active site of the polymerase. Such rare binding modes significantly decrease the incorporation rates and efficiencies of these L-nucleotides catalyzed by the polymerase.


Journal of Molecular Biology | 2010

Identification of critical residues for the tight binding of both correct and incorrect nucleotides to human DNA polymerase λ.

Jessica A. Brown; Lindsey R. Pack; Shanen M. Sherrer; Ajay K. Kshetry; Sean A. Newmister; Jason D. Fowler; John-Stephen Taylor; Zucai Suo

DNA polymerase λ (Pol λ) is a novel X-family DNA polymerase that shares 34% sequence identity with DNA polymerase β. Pre-steady-state kinetic studies have shown that the Pol λ-DNA complex binds both correct and incorrect nucleotides 130-fold tighter, on average, than the DNA polymerase β-DNA complex, although the base substitution fidelity of both polymerases is 10(-)(4) to 10(-5). To better understand Pol λs tight nucleotide binding affinity, we created single-substitution and double-substitution mutants of Pol λ to disrupt the interactions between active-site residues and an incoming nucleotide or a template base. Single-turnover kinetic assays showed that Pol λ binds to an incoming nucleotide via cooperative interactions with active-site residues (R386, R420, K422, Y505, F506, A510, and R514). Disrupting protein interactions with an incoming correct or incorrect nucleotide impacted binding to each of the common structural moieties in the following order: triphosphate≫base>ribose. In addition, the loss of Watson-Crick hydrogen bonding between the nucleotide and the template base led to a moderate increase in K(d). The fidelity of Pol λ was maintained predominantly by a single residue, R517, which has minor groove interactions with the DNA template.


Biomolecular Nmr Assignments | 2010

Backbone assignment of the catalytic core of a Y-family DNA polymerase

Dejian Ma; Jason D. Fowler; Chunhua Yuan; Zucai Suo

Sulfolobus solfataricus DNA polymerase IV (Dpo4), a model Y-family DNA polymerase, bypasses DNA lesions. Here, we report the assignments for the backbone nitrogen, carbon, and amide proton NMR signals of Dpo4’s catalytic core consisting of the finger, palm, and thumb domains. Our work provides the basis for further NMR spectroscopic studies of the interactions among Dpo4, DNA, and an incoming nucleotide.

Collaboration


Dive into the Jason D. Fowler's collaboration.

Top Co-Authors

Avatar

Zucai Suo

Ohio State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dejian Ma

Ohio State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ajay K. Kshetry

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Ashis K. Basu

University of Connecticut

View shared research outputs
Researchain Logo
Decentralizing Knowledge