Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason D. McArthur is active.

Publication


Featured researches published by Jason D. McArthur.


Nature Medicine | 2007

DNase Sda1 provides selection pressure for a switch to invasive group A streptococcal infection.

Mark J. Walker; Andrew Hollands; Martina L. Sanderson-Smith; Jason N. Cole; Joshua K. Kirk; Anna Henningham; Jason D. McArthur; Katrin Dinkla; Ramy K. Aziz; Rita Kansal; Amelia Simpson; John T. Buchanan; Gursharan S. Chhatwal; Malak Kotb; Victor Nizet

Most invasive bacterial infections are caused by species that more commonly colonize the human host with minimal symptoms. Although phenotypic or genetic correlates underlying a bacteriums shift to enhanced virulence have been studied, the in vivo selection pressures governing such shifts are poorly understood. The globally disseminated M1T1 clone of group A Streptococcus (GAS) is linked with the rare but life-threatening syndromes of necrotizing fasciitis and toxic shock syndrome. Mutations in the GAS control of virulence regulatory sensor kinase (covRS) operon are associated with severe invasive disease, abolishing expression of a broad-spectrum cysteine protease (SpeB) and allowing the recruitment and activation of host plasminogen on the bacterial surface. Here we describe how bacteriophage-encoded GAS DNase (Sda1), which facilitates the pathogens escape from neutrophil extracellular traps, serves as a selective force for covRS mutation. The results provide a paradigm whereby natural selection exerted by the innate immune system generates hypervirulent bacterial variants with increased risk of systemic dissemination.


Clinical Microbiology Reviews | 2014

Disease Manifestations and Pathogenic Mechanisms of Group A Streptococcus

Mark J. Walker; Timothy C. Barnett; Jason D. McArthur; Jason N. Cole; Christine M. Gillen; Anna Henningham; Kadaba S. Sriprakash; Martina L. Sanderson-Smith; Victor Nizet

SUMMARY Streptococcus pyogenes, also known as group A Streptococcus (GAS), causes mild human infections such as pharyngitis and impetigo and serious infections such as necrotizing fasciitis and streptococcal toxic shock syndrome. Furthermore, repeated GAS infections may trigger autoimmune diseases, including acute poststreptococcal glomerulonephritis, acute rheumatic fever, and rheumatic heart disease. Combined, these diseases account for over half a million deaths per year globally. Genomic and molecular analyses have now characterized a large number of GAS virulence determinants, many of which exhibit overlap and redundancy in the processes of adhesion and colonization, innate immune resistance, and the capacity to facilitate tissue barrier degradation and spread within the human host. This improved understanding of the contribution of individual virulence determinants to the disease process has led to the formulation of models of GAS disease progression, which may lead to better treatment and intervention strategies. While GAS remains sensitive to all penicillins and cephalosporins, rising resistance to other antibiotics used in disease treatment is an increasing worldwide concern. Several GAS vaccine formulations that elicit protective immunity in animal models have shown promise in nonhuman primate and early-stage human trials. The development of a safe and efficacious commercial human vaccine for the prophylaxis of GAS disease remains a high priority.


The FASEB Journal | 2006

Trigger for group A streptococcal M1T1 invasive disease

Jason N. Cole; Jason D. McArthur; Fiona C. McKay; Martina L. Sanderson-Smith; Amanda J. Cork; Marie Ranson; Manfred Rohde; Andreas Itzek; Hongmin Sun; David Ginsburg; Malak Kotb; Victor Nizet; Gursharan S. Chhatwal; Mark J. Walker

The globally disseminated Streptococcus pyogenes M1T1 clone causes a number of highly invasive human diseases. The transition from local to systemic infection occurs by an unknown mechanism; however invasive M1T1 clinical isolates are known to express significantly less cysteine protease SpeB than M1T1 isolates from local infections. Here, we show that in comparison to the M1T1 strain 5448, the isogenic mutant ΔspeB accumulated 75‐fold more human plasmin activity on the bacterial surface following incubation in human plasma. Human plasminogen was an absolute requirement for M1T1 strain 5448 virulence following subcutaneous (s.c.) infection of humanized plasminogen transgenic mice. S. pyogenes M1T1 isolates from the blood of infected humanized plasminogen transgenic mice expressed reduced levels of SpeB in comparison with the parental 5448 used as inoculum. We propose that the human plasminogen system plays a critical role in group A streptococcal M1T1 systemic disease initiation. SpeB is required for S. pyogenes M1T1 survival at the site of local infection, however, SpeB also disrupts the interaction of S. pyogenes M1T1 with the human plasminogen activation system. Loss of SpeB activity in a subpopulation of S. pyogenes M1T1 at the site of infection results in accumulation of surface plasmin activity thus triggering systemic spread.—Cole, J. N., McArthur, J. D., McKay, F. C., Sanderson‐Smith, M. L., Cork, A. J., Ranson, M., Rohde, M., Itzek, A., Sun, H., Ginsburg, D., Kotb, M., Nizet, V., Chhatwal, G. S., Walker, M. J. Trigger for group A streptococcal M1T1 invasive disease. FASEB J. 20, E1139–E1145 (2006)


Infection and Immunity | 2004

Plasminogen Binding by Group A Streptococcal Isolates from a Region of Hyperendemicity for Streptococcal Skin Infection and a High Incidence of Invasive Infection

Fiona C. McKay; Jason D. McArthur; Martina L. Sanderson-Smith; Sandra Gardam; Bart J. Currie; Kadaba S. Sriprakash; Peter K. Fagan; Rebecca J. Towers; Michael R. Batzloff; Gursharan S. Chhatwal; Marie Ranson; Mark J. Walker

ABSTRACT Reports of resurgence in invasive group A streptococcal (GAS) infections come mainly from affluent populations with infrequent exposure to GAS. In the Northern Territory (NT) of Australia, high incidence of invasive GAS disease is secondary to endemic skin infection, serotype M1 clones are rare in invasive infection, the diversity and level of exposure to GAS strains are high, and no particular strains dominate. Expression of a plasminogen-binding GAS M-like protein (PAM) has been associated with skin infection in isolates elsewhere (D. Bessen, C. M. Sotir, T. M. Readdy, and S. K. Hollingshead, J. Infect. Dis. 173:896-900, 1996), and subversion of the host plasminogen system by GAS is thought to contribute to invasion in animal models. Here, we describe the relationship between plasminogen-binding capacity of GAS isolates, PAM genotype, and invasive capacity in 29 GAS isolates belonging to 25 distinct strains from the NT. In the presence of fibrinogen and streptokinase, invasive isolates bound more plasminogen than isolates from uncomplicated infections (P ≤ 0.004). Only PAM-positive isolates bound substantial levels of plasminogen by a fibrinogen-streptokinase-independent pathway (direct binding). Despite considerable amino acid sequence variation within the A1 repeat region of PAM where the plasminogen-binding domain maps, the critical lysine residue was conserved.


The FASEB Journal | 2008

M protein-mediated plasminogen binding is essential for the virulence of an invasive Streptococcus pyogenes isolate

Martina L. Sanderson-Smith; Katrin Dinkla; Jason N. Cole; Amanda J. Cork; P. G. Maamary; Jason D. McArthur; Gursharan S. Chhatwal; Mark J. Walker

The human protease plasmin plays a crucial role in the capacity of the group A streptococcus (GAS; Streptococus pyogenes) to initiate invasive disease. The GAS strain NS88.2 was isolated from a case of bacteremia from the Northern Territory of Australia, a region with high rates of GAS invasive disease. Mutagenesis of the NS88.2 plasminogen binding M protein Prp was undertaken to examine the contribution of plasminogen binding and cell surface plasmin acquisition to virulence. The isogenic mutant NS88.2prp was engineered whereby four amino acid residues critical for plasminogen binding were converted to alanine codons in the GAS genome sequence. The mutated residues were reverse complemented to the wild‐type sequence to construct GAS strain NS88.2prpRC. In comparison to NS88.2 and NS88.2prpRC, the NS88.2prp mutant exhibited significantly reduced ability to bind human plasminogen and accumulate cell surface plasmin activity during growth in human plasma. Utilizing a humanized plasminogen mouse model of invasive infection, we demonstrate that the capacity to bind plasminogen and accumulate surface plasmin activity plays an essential role in GAS virulence.—Sanderson‐Smith, M. L., Dinkla, K., Cole, J. N., Cork, A. J., Maamary, P. G., McArthur, J. D., Chhatwal, G. S., Walker, M. J. M protein‐mediated plasminogen binding is essential for the virulence of an invasive Streptococcus pyogenes isolate. FASEB J. 22, 2715–2722 (2008)


BioMed Research International | 2012

Bacterial plasminogen receptors: mediators of a multifaceted relationship.

Martina L. Sanderson-Smith; David M. P. De Oliveira; Marie Ranson; Jason D. McArthur

Multiple species of bacteria are able to sequester the host zymogen plasminogen to the cell surface. Once localised to the bacterial surface, plasminogen can act as a cofactor in adhesion, or, following activation to plasmin, provide a source of potent proteolytic activity. Numerous bacterial plasminogen receptors have been identified, and the mechanisms by which they interact with plasminogen are diverse. Here we provide an overview of bacterial plasminogen receptors and discuss the diverse role bacterial plasminogen acquisition plays in the relationship between bacteria and the host.


The FASEB Journal | 2008

Allelic variants of streptokinase from Streptococcus pyogenes display functional differences in plasminogen activation

Jason D. McArthur; Fiona C. McKay; Priya Shyam; Amanda J. Cork; Martina L. Sanderson-Smith; Jason N. Cole; Ulrika Ringdahl; Ulf Sjöbring; Marie Ranson; Mark J. Walker

A common mammalian defense mechanism employed to prevent systemic dissemination of invasive bacteria involves occlusion of local microvasculature and encapsulation of bacteria within fibrin networks. Acquisition of plasmin activity at the bacterial cell surface circumvents this defense mechanism, allowing invasive disease initiation. To facilitate this process, S. pyogenes secretes streptokinase, a plasminogen‐activating protein. Streptokinase polymorphism exhibited by S. pyogenes isolates is well characterized. However, the functional differences displayed by these variants and the biological significance of this variation has not been elucidated. Phylogenetic analysis of ska sequences from 28 S. pyogenes isolates revealed 2 main sequence clusters (clusters 1 and 2). All strains secreted streptokinase, as determined by Western blotting, and were capable of acquiring cell surface plasmin activity after incubation in human plasma. Whereas culture supernatants from strains containing cluster 1 ska alleles also displayed soluble plasminogen activation activity, supernatants from strains containing cluster 2 ska alleles did not. Furthermore, plasminogen activation activity in culture supernatants from strains containing cluster 2 ska alleles could only be detected when plasminogen was prebound with fibrinogen. This study indicates that variant streptokinase proteins secreted by S. pyogenes isolates display differing plasminogen activation characteristics and may therefore play distinct roles in disease pathogenesis.—McArthur, J. D., McKay, F. C., Ramachandran, V., Shyam, P., Cork, A. J., Sanderson‐Smith, M. L., Cole, J. N., Ringdahl, U., Sjöbring, U., Ranson, M., Walker, M. J. Allelic variants of streptokinase from Streptococcus pyogenes display functional differences in plasminogen activation. FASEB J. 22, 3146–3153 (2008)


Journal of Bacteriology | 2004

Two distinct genotypes of prtF2, encoding a fibronectin binding protein, and evolution of the gene family in Streptococcus pyogenes

Jason D. McArthur; C. E. Behm; C. Gutzeit; Mark Dowton; Peter K. Fagan; Rebecca J. Towers; Bart J. Currie; Kadaba S. Sriprakash; Mark J. Walker

The group A Streptococcus (GAS) is an important pathogen that is responsible for a wide range of human diseases. Fibronectin binding proteins (FBPs) play an important role in promoting GAS adherence and invasion of host cells. The prtF2 gene encodes an FBP and is present in approximately 60% of GAS strains. In the present study we examined 51 prtF2-positive GAS strains isolated from the Northern Territory of Australia, and here we describe two genotypes of prtF2 which are mutually exclusive. The two genotypes have been identified previously as pfbp and fbaB. We show that these genotypes map to the same chromosomal location within the highly recombinatorial fibronectin-collagen-T antigen (FCT) locus, indicating that they arose from a common ancestor, and in this study these genotypes were designated the pfbp type and the fbaB type. Phylogenetic analysis of seven pfbp types, 14 fbaB types, and 11 prtF2-negative GAS strains by pulsed-field gel electrophoresis (PFGE) produced 32 distinct PFGE patterns. Interpretation of evolution based on the PFGE dendrogram by parsimony suggested that the pfbp type had a recent origin compared to the fbaB type. A comparison of multiple DNA sequences of the pfbp and fbaB types revealed a mosaic pattern for the amino-terminal region of the pfbp types. The fbaB type is generally conserved at the amino terminus but varies in the number of fibronectin binding repeats in the carboxy terminus. Our data also suggest that there is a possible association of the pfbp genotype with sof (84.2%), while the fbaB genotype was found in a majority of the GAS strains negative for sof (90.6%), indicating that these two prtF2 subtypes may be under different selective pressures.


Infection and Immunity | 2000

Role of Phosphoglucomutase of Bordetella bronchiseptica in Lipopolysaccharide Biosynthesis and Virulence

Nicholas P. West; Heidrun Jungnitz; John T. Fitter; Jason D. McArthur; Carlos A. Guzmán; Mark J. Walker

ABSTRACT The phosphoglucomutase (PGM)-encoding gene of Bordetella bronchiseptica is required for lipopolysaccharide (LPS) biosynthesis. An insertion mutant of the wild-type B. bronchiseptica strain BB7865 which disrupted LPS biosynthesis was created and characterized (BB7865pgm). Genetic analysis of the mutated gene showed it shares high identity with PGM genes of various bacterial species and forms part of an operon which also encompasses the gene encoding phosphoglucose isomerase. Functional assays for PGM revealed that enzyme activity is expressed in bothbvg-positive and bvg-negative strains ofB. bronchiseptica and is substantially reduced in BB7865pgm. Complementation of the mutated PGM gene with that from BB7865 restored the wild-type condition for all phenotypes tested. The ability of the mutant BB7865pgm to survive within J774.A1 cells was significantly reduced at 2 h (40% reduction) and 24 h (56% reduction) postinfection. BB7865pgm was also significantly attenuated in its ability to survive in vivo following intranasal infection of mice, being effectively cleared from the lungs within 4 days, whereas the wild-type strain persisted at least 35 days. The activities of superoxide dismutase, urease, and acid phosphatase were unaffected in the PGM-deficient strain. In contrast, the inability to produce wild-type LPS resulted in a reduced bacterial resistance to oxidative stress and a higher susceptibility to the antimicrobial peptide cecropin P.


The FASEB Journal | 2012

Tracing the evolutionary history of the pandemic group A streptococcal M1T1 clone

Peter G. Maamary; Nouri L. Ben Zakour; Jason N. Cole; Andrew Hollands; Ramy K. Aziz; Timothy C. Barnett; Amanda J. Cork; Anna Henningham; Martina L. Sanderson-Smith; Jason D. McArthur; Carola Venturini; Christine M. Gillen; Joshua K. Kirk; Dwight R. Johnson; William L. Taylor; Edward L. Kaplan; Malak Kotb; Victor Nizet; Scott A. Beatson; Mark J. Walker

The past 50 years has witnessed the emergence of new viral and bacterial pathogens with global effect on human health. The hyperinvasive group A Streptococcus (GAS) M1T1 clone, first detected in the mid‐1980s in the United States, has since disseminated worldwide and remains a major cause of severe invasive human infections. Although much is understood regarding the capacity of this pathogen to cause disease, much less is known of the precise evolutionary events selecting for its emergence. We used high‐throughput technologies to sequence a World Health Organization strain collection of serotype M1 GAS and reconstructed its phylogeny based on the analysis of core genome single‐nucleotide polymorphisms. We demonstrate that acquisition of a 36‐kb genome segment from serotype M12 GAS and the bacteriophage‐encoded DNase Sda1 led to increased virulence of the M1T1 precursor and occurred relatively early in the molecular evolutionary history of this strain. The more recent acquisition of the phage‐encoded superantigen SpeA is likely to have provided selection advantage for the global dissemination of the M1T1 clone. This study provides an exemplar for the evolution and emergence of virulent clones from microbial populations existing commensally or causing only superficial infection.—Maamary, P. G., Ben Zakour, N. L., Cole, J. N., Hollands, A., Aziz, R. K., Barnett, T. C., Cork, A. J., Henningham, A., Sanderson‐Smith, M., McArthur, J. D., Venturini, C., Gillen, C. M., Kirk, J. K., Johnson, D. R., Taylor, W. L., Kaplan, E. L., Kotb, M., Nizet, V., Beatson, S. A., Walker, M. J. Tracing the evolutionary history of the pandemic group A streptococcal M1T1 clone. FASEB J. 26, 4675–4684 (2012). www.fasebj.org

Collaboration


Dive into the Jason D. McArthur's collaboration.

Top Co-Authors

Avatar

Mark J. Walker

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason N. Cole

University of California

View shared research outputs
Top Co-Authors

Avatar

Victor Nizet

University of California

View shared research outputs
Top Co-Authors

Avatar

Amanda J. Cork

University of Wollongong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Malak Kotb

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kadaba S. Sriprakash

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge