Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason D. Witter is active.

Publication


Featured researches published by Jason D. Witter.


Environmental Science & Technology | 2010

Uptake of pharmaceutical and personal care products by soybean plants from soils applied with biosolids and irrigated with contaminated water.

Chenxi Wu; Alison L. Spongberg; Jason D. Witter; Min Fang; Kevin Czajkowski

Many pharmaceuticals and personal care products (PPCPs) are commonly found in biosolids and effluents from wastewater treatment plants. Land application of these biosolids and the reclamation of treated wastewater can transfer those PPCPs into the terrestrial and aquatic environments, giving rise to potential accumulation in plants. In this work, a greenhouse experiment was used to study the uptake of three pharmaceuticals (carbamazepine, diphenhydramine, and fluoxetine) and two personal care products (triclosan and triclocarban) by an agriculturally important species, soybean (Glycine max (L.) Merr.). Two treatments simulating biosolids application and wastewater irrigation were investigated. After growing for 60 and 110 days, plant tissues and soils were analyzed for target compounds. Carbamazepine, triclosan, and triclocarban were found to be concentrated in root tissues and translocated into above ground parts including beans, whereas accumulation and translocation for diphenhydramine and fluoxetine was limited. The uptake of selected compounds differed by treatment, with biosolids application resulting in higher plant concentrations, likely due to higher loading. However, compounds introduced by irrigation appeared to be more available for uptake and translocation. Degradation is the main mechanism for the dissipation of selected compounds in biosolids applied soils, and the presence of soybean plants had no significant effect on sorption. Data from two different harvests suggest that the uptake from soil to root and translocation from root to leaf may be rate limited for triclosan and triclocarban and metabolism may occur within the plant for carbamazepine.


Science of The Total Environment | 2008

Pharmaceutical compounds in the wastewater process stream in Northwest Ohio

Alison L. Spongberg; Jason D. Witter

In order to add to the current state of knowledge regarding occurrence and fate of Pharmaceutical and Personal Care Products (PPCPs) in the environment, influent, effluent and biosolids from three wastewater treatment facilities in Northwest Ohio, USA, and a stream containing effluent discharge from a rural treatment facility were analyzed. The three WWTP facilities vary in size and in community served, but are all Class B facilities. One facility was sampled multiple times in order to assess temporal variability. Twenty compounds including several classes of antibiotics, acidic pharmaceuticals, and prescribed medications were analyzed using ultrasonication extraction, SPE cleanup and liquid chromatography-electrospray ionization tandem mass spectrometry. The highest number of compounds and the greatest concentrations were found in the influent from the largest and most industrial WWTP facility. Short-term temporal variability was minimal at this facility. Many compounds, such as clarithromycin, salicylic acid and gemfibrizol were found at concentrations more than one order of magnitude higher than found in the effluent samples. Effluent waters contained elevated levels of carbamazepine, clindamycin and sulfamethoxazole. Differences in composition and concentration of effluent waters between facilities existed. Biosolid samples from two different facilities were very similar in PPCP composition, although concentrations varied. Ciprofloxacin was found in biosolids at concentrations (up to 46 mug/kg dry mass) lower than values reported elsewhere. Diclofenac survived the WWTP process and was found to persist in stream water incorporating effluent discharge. The low variability within one plant, as compared to the variability found among different wastewater treatment plants locally and in the literature is likely due to differences in population, PPCP usage, plant operations and/or local environment. These data are presented here for comparison with this emerging set of environmental compounds of concern.


Chemosphere | 2008

Determination of the persistence of pharmaceuticals in biosolids using liquid-chromatography tandem mass spectrometry

Wu Chenxi; Alison L. Spongberg; Jason D. Witter

Sludge generated in waste water treatment process can be a major sink for some pharmaceutical and personal care products (PPCPs). The land application of sewage sludge (in the form of biosolids in the United States) can therefore potentially introduce PPCPs into the environment. After treatment, biosolids are often subjected to a storage period before land application. However, little information is available with regard to the fate of PPCPs in biosolids during the storage. In this work, the persistence of seven pharmaceuticals and one antibacterial was evaluated using ultrasonic extraction and liquid-chromatography tandem mass spectrometry (LC-MS/MS). The impacts of aeration and sunlight exposure were investigated. During the experiment, no elimination was observed for carbamazepine, triclosan, and ciprofloxacin while elimination was found for tetracycline, doxycycline, clindamycin, erythromycin, and clarithromycin. Using an availability-adjusted kinetic model, the 50% dissipation time was 37 to >77d for tetracycline, 53 to >77d for doxycycline, 1.0-1.6d for clindamycin, 1.1-1.9d for clarithromycin, and 7.0-17d for erythromycin. Those compounds were found more persistent under anaerobic conditions than aerobic condition with a longer 50% dissipation time by a factor of 1.5-2. However, minor impact was observed from sunlight irradiation.


Journal of Agricultural and Food Chemistry | 2009

Adsorption and degradation of triclosan and triclocarban in soils and biosolids-amended soils.

Chenxi Wu; Alison L. Spongberg; Jason D. Witter

Triclosan and triclocarban are antibacterial agents that are widely used in numerous personal care products. Limited information is available on their environmental behavior in soils and soils land applied with wastewaters and biosolids. In this study, laboratory experiments were performed to investigate their adsorption and degradation in soils. Both antibacterial agents adsorbed strongly to the sandy loam and silty clay soils with and without addition of biosolids, with distribution coefficients (K(d)) ranging from 178 to 264 L kg(-1) for triclosan and from 763 to 1187 L kg(-1) for triclocarban. Sorption of triclosan decreased with increase in soil pH from 4 to 8, whereas triclocarban sorption showed no effect within the tested pH range. Competitive sorption was observed when triclosan and triclocarban coexisted, but the cosolute effect was concentration dependent. Biosolids amendment increased the sorption of triclosan and triclocarban, likely due to the addition of soil organic matter, but displayed no significant effect on degradation.


Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering | 2009

Sorption and biodegradation of selected antibiotics in biosolids

Chenxi Wu; Alison L. Spongberg; Jason D. Witter

Laboratory experiments were conducted to investigate the sorption and degradation of six antibiotics including Ciprofloxacin (CIP), Tetracycline (TC), Doxycycline (DTC), Sulfamethazine (SMZ), Sulfamethoxazole (SMX) and Clindamycin (CLD) in an aerobically digested biosolid. In the sorption experiment, CIP, TC, and DTC sorbed strongly, followed by CLD, while SMZ and SMX were only weakly sorbed to particles. An adsorption/desorption hysteresis was observed for nearly all the antibiotics to some extent. In the degradation experiment, the elimination of antibiotics, except CIP for which no degradation was observed, was found primarily attributed to biological degradation. For the degradation of TC, DTC, and CLD, a stable phase was achieved after preliminary degradation. We hypothesize that the nondegradable residuals are nondesorbable portions of sorbed antibiotics. From the results, other than SMX, all tested antibiotics can potentially survive biosolids storage periods and can be introduced into the environment following biosolids land application.


Water Research | 2009

OCCURRENCE OF SELECTED PHARMACEUTICALS IN AN AGRICULTURAL LANDSCAPE, WESTERN LAKE ERIE BASIN

Chenxi Wu; Jason D. Witter; Alison L. Spongberg; Kevin Czajkowski

The occurrence of 18 commonly used pharmaceuticals was investigated in an agricultural area, which is primarily affected by runoff from agricultural fields and septic systems, on the coastline of Maumee Bay, within the western Lake Erie basin. Selected pharmaceuticals were detected in surface water, except clofibric acid and fluoxethine. The most frequently detected compounds were caffeine (88%), carbamazepine (57%) and paraxanthine (56%). Caffeine, carbamazepine, ibuprofen and paraxanthine were detected with maximum concentrations of 4.2, 1.2, 2.8 and 1.8 microg L(-1), respectively. However, no compound was detected in any sediment samples. In a field receiving biosolids application, pharmaceuticals were detected in the field tile drainage following biosolids application but not in soil. The occurrence of pharmaceuticals in surface water can be linked to the use of septic systems.


Water Research | 2011

Reconnaissance of selected PPCP compounds in Costa Rican surface waters.

Alison L. Spongberg; Jason D. Witter; Jenaro Acuña; José A. Vargas; Manuel M. Murillo; Gerardo Umaña; Eddy Gómez; Greivin Perez

Eighty-six water samples were collected in early 2009 from Costa Rican surface water and coastal locations for the analysis of 34 pharmaceutical and personal care product compounds (PPCPs). Sampling sites included areas receiving treated and untreated wastewaters, and urban and rural runoff. PPCPs were analyzed using a combination of solid phase extraction and liquid chromatography tandem mass spectrometry. The five most frequently detected compounds were doxycycline (77%), sulfadimethoxine (43%), salicylic acid (41%), triclosan (34%) and caffeine (29%). Caffeine had the maximum concentration of 1.1 mg L(-1), possibly due to coffee bean production facilities upstream. Other compounds found in high concentrations include: doxycycline (74 μg L(-1)), ibuprofen (37 μg L(-1)), gemfibrozil (17 μg L(-1)), acetominophen (13 μg L(-1)) and ketoprofen (10 μg L(-1)). The wastewater effluent collected from an oxidation pond had similar detection and concentrations of compounds compared to other studies reported in the literature. Waters receiving runoff from a nearby hospital showed higher concentrations than other areas for many PPCPs. Both caffeine and carbamazepine were found in low frequency compared to other studies, likely due to enhanced degradation and low usage, respectively. Overall concentrations of PPCPs in surface waters of Costa Rica are inline with currently reported occurrence data from around the world, with the exception of doxycycline.


Ecotoxicology and Environmental Safety | 2012

Transfer of wastewater associated pharmaceuticals and personal care products to crop plants from biosolids treated soil.

Chenxi Wu; Alison L. Spongberg; Jason D. Witter; B. B. Maruthi Sridhar

The plant uptake of emerging organic contaminants such as pharmaceuticals and personal care products (PPCPs) is receiving increased attention. Biosolids from municipal wastewater treatment have been previously identified as a major source for PPCPs. Thus, plant uptake of PPCPs from biosolids applied soils needs to be understood. In the present study, the uptake of carbamazepine, diphenhydramine, and triclocarban by five vegetable crop plants was examined in a field experiment. At the time of harvest, three compounds were detected in all plants grown in biosolids-treated soils. Calculated root concentration factor (RCF) and shoot concentration factor (SCF) are the highest for carbamazepine followed by triclocarban and diphenhydramine. Positive correlation between RCF and root lipid content was observed for carbamazepine but not for diphenhydramine and triclocarban. The results demonstrate the ability of crop plants to accumulate PPCPs from contaminated soils. The plant uptake processes of PPCPs are likely affected by their physico-chemical properties, and their interaction with soil. The difference uptake behavior between plant species could not solely be attributed to the root lipid content.


Ecotoxicology and Environmental Safety | 2014

Occurrence of pharmaceuticals and personal care products and associated environmental risks in the central and lower Yangtze river, China.

Chenxi Wu; Xiaolong Huang; Jason D. Witter; Alison L. Spongberg; Kexiong Wang; Ding Wang; Jiantong Liu

Pharmaceutical and personal care products (PPCPs) residues are being highlighted around the world as of emerging concern in surface waters. Here the occurrence of PPCPs in the central and lower Yangtze River, along with four large freshwater lakes within the river basin (Dongting, Poyang, Tai, and Chao) was reported. Fifteen out of twenty selected PPCPs were detected in the collected surface water samples. Caffeine, paraxanthine, sulfamethazine, and clindamycin were detected with 100 percent frequency in the Yangtze River. In the river, the highest average concentration was observed for erythromycin (296 ng L(-1)), followed by caffeine (142 ng L(-1)) and paraxanthine (41 ng L(-1)). In the four lakes, total PPCP concentrations were much higher in the Chao (1547 ng L(-1)) and Tai (1087 ng L(-1)) lakes compared to the Poyang (108 ng L(-1)) and Dongting (137 ng L(-1)) lakes. Lincomycin and clindamycin were most abundant in the lakes, especially in the Tai Lake. Environmental risk assessment for the worst case scenario was assessed using calculated risk quotients, and indicates a high environmental risk of erythromycin and clarithromycin in the Yangtze River, clarithromycin in the Chao Lake, and clindamycin in the Tai Lake.


International Journal of Environmental Analytical Chemistry | 2008

Use of solid phase extraction and liquid chromatography-tandem mass spectrometry for simultaneous determination of various pharmaceuticals in surface water

Chenxi Wu; Alison L. Spongberg; Jason D. Witter

This article presents the development, validation and application of a new multi-residue method for simultaneous determination of 36 pharmaceuticals (histamine receptor antagonists, psychoactive stimulant, antiepileptics, antihypertensive, non-steroidal anti-inflammatory, analgesic and antipyretic, lipid regulator, antibiotics, antibacterial, skin care ingredient and metabolites of nicotine and lipid regulators) in surface water using solid phase extraction (Strata-X at pH 5) and liquid chromatography-tandem mass spectrometry (LC–MS/MS). Recoveries were greater than 70% with less than 20% SD for the majority of analytes. The instrumental quantification limit was between 2 and 181 pg, and method quantification limit varied from 0.5 to 98 ng L−1 in spiked stream water. The pH and sorbent dependence of matrix effects is discussed. The optimised method was used to determine the occurrence of target analytes in surface water from the coastal Lake Erie in Oregon, northwest Ohio. Seventeen analytes were detected with concentrations up to hundreds of nanogram per litre in stream and lake water samples.

Collaboration


Dive into the Jason D. Witter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chenxi Wu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. B. Maruthi Sridhar

Bowling Green State University

View shared research outputs
Top Co-Authors

Avatar

Min Fang

University of Toledo

View shared research outputs
Top Co-Authors

Avatar

Robert K. Vincent

Bowling Green State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge