Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason Dufour is active.

Publication


Featured researches published by Jason Dufour.


Journal of Cellular Biochemistry | 2006

Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue

Reza Izadpanah; Cynthia B. Trygg; Bindiya Patel; Christopher Kriedt; Jason Dufour; Jeffery M. Gimble; Bruce A. Bunnell

The biologic characteristics of mesenchymal stem cells (MSCs) isolated from two distinct tissues, bone marrow and adipose tissue were evaluated in these studies. MSCs derived from human and non‐human primate (rhesus monkey) tissue sources were compared. The data indicate that MSCs isolated from rhesus bone marrow (rBMSCs) and human adipose tissue (hASCs) had more similar biologic properties than MSCs of rhesus adipose tissue (rASCs) and human bone marrow MSCs (hBMSCs). Analyses of in vitro growth kinetics revealed shorter doubling time for rBMSCs and hASCs. rBMSCs and hASCs underwent significantly more population doublings than the other MSCs. MSCs from all sources showed a marked decrease in telomerase activity over extended culture; however, they maintained their mean telomere length. All of the MSCs expressed embryonic stem cell markers, Oct‐4, Rex‐1, and Sox‐2 for at least 10 passages. Early populations of MSCs types showed similar multilineage differentiation capability. However, only the rBMSCs and hASCs retain greater differentiation efficiency at higher passages. Overall in vitro characterization of MSCs from these two species and tissue sources revealed a high level of common biologic properties. However, the results demonstrate clear biologic distinctions, as well. J. Cell. Biochem. 99: 1285–1297, 2006.


Nature | 2005

Protection of macaques from vaginal SHIV challenge by vaginally delivered inhibitors of virus-cell fusion

Ronald S. Veazey; Per Johan Klasse; Susan M. Schader; Qinxue Hu; Thomas J. Ketas; Min Lu; Preston A. Marx; Jason Dufour; Richard J. Colonno; Robin Shattock; Martin S. Springer; John P. Moore

Human immunodeficiency virus type 1 (HIV-1) continues to spread, principally by heterosexual sex, but no vaccine is available. Hence, alternative prevention methods are needed to supplement educational and behavioural-modification programmes. One such approach is a vaginal microbicide: the application of inhibitory compounds before intercourse. Here, we have evaluated the microbicide concept using the rhesus macaque ‘high dose’ vaginal transmission model with a CCR5-receptor-using simian–human immunodeficiency virus (SHIV-162P3) and three compounds that inhibit different stages of the virus–cell attachment and entry process. These compounds are BMS-378806, a small molecule that binds the viral gp120 glycoprotein and prevents its attachment to the CD4 and CCR5 receptors, CMPD167, a small molecule that binds to CCR5 to inhibit gp120 association, and C52L, a bacterially expressed peptide inhibitor of gp41-mediated fusion. In vitro, all three compounds inhibit infection of T cells and cervical tissue explants, and C52L acts synergistically with CMPD167 or BMS-378806 to inhibit infection of cell lines. In vivo, significant protection was achieved using each compound alone and in combinations. CMPD167 and BMS-378806 were protective even when applied 6 h before challenge.


Cancer Research | 2008

Long-term In vitro Expansion Alters the Biology of Adult Mesenchymal Stem Cells

Reza Izadpanah; Deepak Kaushal; Christopher Kriedt; Fern Tsien; Bindiya Patel; Jason Dufour; Bruce A. Bunnell

Mesenchymal stem cells (MSC) derived from bone marrow stem cells (BMSC) and adipose tissue stem cells (ASC) of humans and rhesus macaques were evaluated for their cell cycle properties during protracted culture in vitro. Human ASCs (hASC) and rhesus BMSCs (rBMSC) underwent significantly more total population doublings than human BMSCs (hBMSC) and rhesus ASCs (rASC). The cell cycle profile of all MSCs was altered as cultures aged. hMSCs underwent an increase in the frequency of cells in the S phase at P20 and P30. However, rhesus MSCs from both sources developed a distinct polyploid population of cells at P20, which progressed to aneuploidy by P30. Karyotype analysis of MSCs revealed the development of tetraploid or aneuploid karyotypes in the rhesus cells at P20 or P30. Analysis of the transcriptome of the MSCs from early and late passages revealed significant alterations in the patterns of gene expression (8.8% of the genes were differentially expressed in hBMSCs versus hASCs, and 5.5% in rBMSCs versus rASCs). Gene expression changes were much less evident within the same cell type as aging occurred (0.7% in hMSCs and 0.9% in rMSC). Gene ontology analysis showed that functions involved in protein catabolism and regulation of pol II transcription were overrepresented in rASCs, whereas the regulation of I kappa B/nuclear factor-kappaB cascade were overrepresented in hBMSCs. Functional analysis of genes that were differentially expressed in rASCs and hBMSCs revealed that pathways involved in cell cycle, cell cycle checkpoints, protein-ubiquitination, and apoptosis were altered.


Journal of Cell Science | 2004

Neurogenesis of Rhesus adipose stromal cells

Soo Kyung Kang; Lorna Putnam; Joni Ylostalo; Ion Razvan Popescu; Jason Dufour; Andrei B. Belousov; Bruce A. Bunnell

In this study, we isolated and characterized a population of non-human primate adipose tissue stromal cells (pATSCs) containing multipotent progenitor cells. We show that these pATSCs can differentiate into several mesodermal lineages, as well as neural lineage cells. For neural induction of pATSCs and non-human primate bone marrow stromal cells (pBMSCs), the cells were cultured in Neurobasal (NB) media supplemented with B27, basic fibroblast growth factor (bFGF), brain-derived neurotrophic factor (BDNF) and epidermal growth factor (EGF). After 4 days in culture, the pATSCs form compact, spheroid bodies that ultimately become neurospheres (NS). Free-floating neurospheres undergo extensive differentiation when cultured on PDL-laminin. Our data suggest that the neurogenic potential of pATSCs is markedly higher than that of pBMSCs. We have also performed microarray analysis and characterized the gene expression patterns in undifferentiated pATSCs. The direct comparison of gene expression profiles in undifferentiated pATSCs and pATSC-NS, and delineated specific members of important growth factor, signaling, cell adhesion and transcription factors families. Our data indicate that adipose tissue may be an alternative source of stem cells for therapy of central nervous system (CNS) defects.


Journal of Experimental Medicine | 2003

Use of a small molecule CCR5 inhibitor in macaques to treat simian immunodeficiency virus infection or prevent simian-human immunodeficiency virus infection

Ronald S. Veazey; Per Johan Klasse; Thomas J. Ketas; Jacqueline D. Reeves; Michael Piatak; Kevin J. Kunstman; Shawn E. Kuhmann; Preston A. Marx; Jeffrey D. Lifson; Jason Dufour; Megan Mefford; Ivona Pandrea; Steven M. Wolinsky; Robert W. Doms; Julie A. DeMartino; Salvatore J. Siciliano; Kathy Lyons; Martin S. Springer; John P. Moore

Human immunodeficiency virus type 1 (HIV-1) fuses with cells after sequential interactions between its envelope glycoproteins, CD4 and a coreceptor, usually CC chemokine receptor 5 (CCR5) or CXC receptor 4 (CXCR4). CMPD 167 is a CCR5-specific small molecule with potent antiviral activity in vitro. We show that CMPD 167 caused a rapid and substantial (4–200-fold) decrease in plasma viremia in six rhesus macaques chronically infected with simian immunodeficiency virus (SIV) strains SIVmac251 or SIVB670, but not in an animal infected with the X4 simian–human immunodeficiency virus (SHIV), SHIV-89.6P. In three of the SIV-infected animals, viremia reduction was sustained. In one, there was a rapid, but partial, rebound and in another, there was a rapid and complete rebound. There was a substantial delay (>21 d) between the end of therapy and the onset of full viremia rebound in two animals. We also evaluated whether vaginal administration of gel-formulated CMPD 167 could prevent vaginal transmission of the R5 virus, SHIV-162P4. Complete protection occurred in only 2 of 11 animals, but early viral replication was significantly less in the 11 CMPD 167-recipients than in 9 controls receiving carrier gel. These findings support the development of small molecule CCR5 inhibitors as antiviral therapies, and possibly as components of a topical microbicide to prevent HIV-1 sexual transmission.


The Journal of Infectious Diseases | 2010

Protection of rhesus macaques from vaginal infection by vaginally delivered Maraviroc, an inhibitor of HIV-1 entry via the CCR5 co-receptor

Ronald S. Veazey; Thomas J. Ketas; Jason Dufour; Terri Moroney-Rasmussen; Linda C. Green; P. J. Klasse; John P. Moore

An effective vaginal microbicide could reduce human immunodeficiency virus type 1 (HIV-1) transmission to women. Among microbicide candidates in clinical development is Maraviroc (MVC), a small-molecule drug that binds the CCR5 co-receptor and impedes HIV-1 entry into cells. Delivered systemically, MVC reduces viral load in HIV-1-infected individuals, but its ability to prevent transmission is untested. We have now evaluated MVC as a vaginal microbicide with use of a stringent model that involves challenge of rhesus macaques with a high-dose of a CCR5-using virus, SHIV-162P3. Gel-formulated, prescription-grade MVC provided dose-dependent protection, half-maximally at 0.5 mM (0.25 mg/mL). The duration of protection was transient; the longer the delay between MVC application and virus challenge, the less protection (half life of approximately 4 h). As expected, MVC neither protected against challenge with a CXCR4-using virus, SHIV-KU1, nor exacerbated postinfection viremia. These findings validate MVC development as a vaginal microbicide for women and should guide clinical programs.


Nature Medicine | 2005

Protection of macaques from vaginal SHIV challenge by an orally delivered CCR5 inhibitor

Ronald S. Veazey; Martin S. Springer; Preston A. Marx; Jason Dufour; Per Johan Klasse; John P. Moore

Pre-exposure oral prophylaxis with antiviral drugs is a potential method for preventing transmission of human immunodeficiency virus type 1 (HIV-1). We show that oral delivery of CMPD167, a small molecule that binds to the CCR5 coreceptor, for 10–14 d can protect a substantial proportion of macaques from vaginal infection with a CCR5-using virus (SHIV-162P3). The macaques that became infected despite receiving CMPD167 had reduced plasma viremia levels during the earliest stages of infection.


Journal of Virology | 2006

Simian Immunodeficiency Virus SIVagm.sab Infection of Caribbean African Green Monkeys: a New Model for the Study of SIV Pathogenesis in Natural Hosts

Ivona Pandrea; Cristian Apetrei; Jason Dufour; Nora Dillon; Joseph Barbercheck; Michael J. Metzger; Béatrice Jacquelin; Rudolf P. Bohm; Preston A. Marx; Françoise Barré-Sinoussi; Vanessa M. Hirsch; Michaela Müller-Trutwin; Andrew A. Lackner; Ronald S. Veazey

ABSTRACT Caribbean-born African green monkeys (AGMs) were classified as Chlorocebus sabaeus by cytochrome b sequencing. Guided by these phylogenetic analyses, we developed a new model for the study of simian immunodeficiency virus (SIV) infection in natural hosts by inoculating Caribbean AGMs with their species-specific SIVagm.sab. SIVagm.sab replicated efficiently in Caribbean AGM peripheral blood mononuclear cells in vitro. During SIVagm.sab primary infection of six Caribbean AGMs, the virus replicated at high levels, with peak viral loads (VLs) of 107 to 108 copies/ml occurring by day 8 to 10 postinfection (p.i.). Set-point values of up to 2 × 105 copies/ml were reached by day 42 p.i. and maintained throughout follow-up (through day 450 p.i.). CD4+ T-cell counts in the blood showed a transient depletion at the peak of VL, and then returned to near preinfection values by day 28 p.i. and remained relatively stable during the chronic infection. Preservation of CD4 T cells was also found in lymph nodes (LNs) of chronic SIVagm.sab-infected Caribbean AGMs. No activation of CD4+ T cells was detected in the periphery in SIV-infected Caribbean AGMs. These virological and immunological profiles from peripheral blood and LNs were identical to those previously reported in African-born AGMs infected with the same viral strain (SIVagm.sab92018). Due to these similarities, we conclude that Caribbean AGMs are a useful alternative to AGMs of African origin as a model for the study of SIV infection in natural African hosts.


Journal of Virology | 2008

Simian Immunodeficiency Virus SIVagm Dynamics in African Green Monkeys

Ivona Pandrea; Ruy M. Ribeiro; Rajeev Gautam; Thaidra Gaufin; Melissa Pattison; Mary Barnes; Christopher Monjure; Crystal Stoulig; Jason Dufour; Wayne Cyprian; Guido Silvestri; Michael D. Miller; Alan S. Perelson; Cristian Apetrei

ABSTRACT The mechanisms underlying the lack of disease progression in natural simian immunodeficiency virus (SIV) hosts are still poorly understood. To test the hypothesis that SIV-infected African green monkeys (AGMs) avoid AIDS due to virus replication occurring in long-lived infected cells, we infected six animals with SIVagm and treated them with potent antiretroviral therapy [ART; 9-R-(2-phosphonomethoxypropyl) adenine (tenofovir) and beta-2,3-dideoxy-3-thia-5-fluorocytidine (emtricitabine)]. All AGMs showed a rapid decay of plasma viremia that became undetectable 36 h after ART initiation. A significant decrease of viral load was observed in peripheral blood mononuclear cells and intestine. Mathematical modeling of viremia decay post-ART indicates a half-life of productively infected cells ranging from 4 to 9.5 h, i.e., faster than previously reported for human immunodeficiency virus and SIV. ART induced a slight but significant increase in peripheral CD4+ T-cell counts but no significant changes in CD4+ T-cell levels in lymph nodes and intestine. Similarly, ART did not significantly change the levels of cell proliferation, activation, and apoptosis, already low in AGMs chronically infected with SIVagm. Collectively, these results indicate that, in SIVagm-infected AGMs, the bulk of virus replication is sustained by short-lived cells; therefore, differences in disease outcome between SIVmac infection of macaques and SIVagm infection of AGMs are unlikely due to intrinsic differences in the in vivo cytopathicities between the two viruses.


American Journal of Pathology | 2008

Interaction of the Lyme Disease Spirochete Borrelia burgdorferi with Brain Parenchyma Elicits Inflammatory Mediators from Glial Cells as Well as Glial and Neuronal Apoptosis

Geeta Ramesh; Juan T. Borda; Jason Dufour; Deepak Kaushal; Ramesh Ramamoorthy; Andrew A. Lackner; Mario T. Philipp

Lyme neuroborreliosis, caused by the spirochete Borrelia burgdorferi, often manifests by causing neurocognitive deficits. As a possible mechanism for Lyme neuroborreliosis, we hypothesized that B. burgdorferi induces the production of inflammatory mediators in the central nervous system with concomitant neuronal and/or glial apoptosis. To test our hypothesis, we constructed an ex vivo model that consisted of freshly collected slices from brain cortex of a rhesus macaque and allowed live B. burgdorferi to penetrate the tissue. Numerous transcripts of genes that regulate inflammation as well as oligodendrocyte and neuronal apoptosis were significantly altered as assessed by DNA microarray analysis. Transcription level increases of 7.43-fold (P = 0.005) for the cytokine tumor necrosis factor-alpha and 2.31-fold (P = 0.016) for the chemokine interleukin (IL)-8 were also detected by real-time-polymerase chain reaction array analysis. The immune mediators IL-6, IL-8, IL-1beta, COX-2, and CXCL13 were visualized in glial cells in situ by immunofluorescence staining and confocal microscopy. Concomitantly, significant proportions of both oligodendrocytes and neurons undergoing apoptosis were present in spirochete-stimulated tissues. IL-6 production by astrocytes in addition to oligodendrocyte apoptosis were also detected, albeit at lower levels, in rhesus macaques that had received in vivo intraparenchymal stereotaxic inoculations of live B. burgdorferi. These results provide proof of concept for our hypothesis that B. burgdorferi produces inflammatory mediators in the central nervous system, accompanied by glial and neuronal apoptosis.

Collaboration


Dive into the Jason Dufour's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivona Pandrea

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge