Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason E. Bruemmer is active.

Publication


Featured researches published by Jason E. Bruemmer.


Theriogenology | 2003

Embryo technologies in the horse.

E.L. Squires; E.M. Carnevale; Patrick M. McCue; Jason E. Bruemmer

Recent studies demonstrated that zwitterionic buffers could be used for satisfactory storage of equine embryos at 5 degrees C. The success of freezing embryos is dependent upon size and stage of development. Morulae and blastocysts <300 microm can be slowly cooled or vitrified with acceptable pregnancy rates after transfer. The majority of equine embryos are collected from single ovulating mares, as there is no commercially available product for superovulation in equine. However, pituitary extract, rich in FSH, can be used to increase embryo recovery three- to four-fold. Similar to human medicine, assisted reproductive techniques have been developed for the older, subfertile mare. Transfer of in vivo-matured oocytes from young, healthy mares into a recipients oviduct results in a 70-80% pregnancy rate compared with a 30-40% pregnancy rate when the oocytes are from older, subfertile mares. This procedure can also be used to evaluate in vitro maturation systems. In vitro production of embryos is still quite difficult in the horse. However, intracytoplasmic sperm injection (ICSI) has been used to produce several foals. Cleavage rates of 60% and blastocyst rates of 30% have been reported after ICSI of in vitro-matured oocytes. Gamete intrafallopian tube transfer (GIFT) is a possible treatment for subfertile stallions. Transfer of in vivo-matured oocytes with 200,000 sperm into the oviduct of normal mares resulted in a pregnancy rate of 55-82%. Oocyte freezing is a technique that has proven difficult in most species. However, equine oocytes vitrified in a solution of ethylene glycol, DMSO, and Ficoll and loaded onto a cryoloop resulted in three pregnancies of 26 transfers and two live foals produced. Production of a cloned horse appears to be likely, as several cloned pregnancies have recently been produced.


Theriogenology | 2002

Pregnancies from vitrified equine oocytes collected from super-stimulated and non-stimulated mares

L.J. Maclellan; E.M. Carnevale; M.A. Coutinho da Silva; C.F. Scoggin; Jason E. Bruemmer; E.L. Squires

The objectives were to compare embryo development rates after transfer into inseminated recipients, vitrified thawed oocytes collected from super-stimulated versus non-stimulated mares. In vivo matured oocytes were collected by transvaginal, ultrasound guided follicular aspiration from super-stimulated and non-stimulated mares 24-26 h after administration of hCG. Oocytes were cultured for 2-4 h prior to vitrification. Cryoprotectants were loaded in three steps before oocytes were placed onto a 0.5-0.7 mm diameter nylon cryoloop and plunged directly into liquid nitrogen. Oocytes were thawed and the cryoprotectant was removed in three steps. After thawing, oocytes were cultured 10-12 h before transfer into inseminated recipients. Non-vitrified oocytes, cultured 14-16 h before transfer, were used as controls. More oocytes were collected from 23 non-stimulated mares (20 of 29 follicles), than 10 super-stimulated mares (18 of 88 follicles; P < 0.001). Of the 20 oocytes collected from non-stimulated mares, 12 were vitrified and 8 were transferred as controls. After thawing, 10 of the 12 oocytes were morphologically intact and transferred into recipients resulting in one embryonic vesicle on Day 16 (1 of 12 = 8%). Fourteen oocytes from super-stimulated mares were vitrified, and 4 were transferred as controls. After thawing, 9 of the 14 oocytes were morphologically intact and transferred into recipients resulting in two embryonic vesicles on Day 16 (2 of 14 = 14%). In control transfers, 7 of 8 oocytes from non-stimulated mares and 3 of 4 oocytes from super-stimulated mares resulted in embryonic vesicles on Day 16. The two pregnancies from vitrified oocytes resulted in healthy foals.


Biology of Reproduction | 2010

Uterine Vein Infusion of Interferon Tau (IFNT) Extends Luteal Life Span in Ewes

Rebecca C. Bott; Ryan L. Ashley; Luiz E. Henkes; Alfredo Q. Antoniazzi; Jason E. Bruemmer; G. D. Niswender; Fuller W. Bazer; Thomas E. Spencer; Natalia P. Smirnova; Russell V. Anthony; Thomas R. Hansen

Interferon tau (IFNT) from the ovine conceptus has paracrine actions on the endometrium that alter release of prostaglandin F2alpha (PGF) and protect the corpus luteum (CL). Antiviral activity in uterine vein blood and expression of interferon-stimulated genes (ISGs) in CL is greater in pregnant than in nonpregnant ewes. We hypothesized that IFNT contributes to antiviral activity in uterine vein blood and has endocrine actions on the CL. Preadsorption of IFNT with antiserum against recombinant ovine (ro) IFNT revealed that antiviral activity in uterine vein blood from pregnant ewes was mediated by IFNT. Endocrine actions of IFNT were examined after infusing either roIFNT or bovine serum albumin (BSA; 200 μg/24 h; mini-osmotic pump) into the uterine vein of nonpregnant ewes from Day 10 to Day 11 postestrus. The abundance of ISG15 mRNA and protein was greater in CL (P < 0.05) from ewes receiving 24-h roIFNT infusion compared to that from ewes receiving 24-h BSA infusion. Injection of PGF at 12 h following insertion of mini-osmotic pumps resulted in a decline in serum progesterone concentrations 6 through 12 h later in BSA-infused ewes; however, in roIFNT-infused ewes, a similar decline in progesterone concentrations at 6 h was followed by recovery to control values at 12 h. Ewes then received infusions (200 μg/day) of either roIFNT or BSA for 7 days beginning on Day 10 of the estrous cycle. All BSA-infused ewes returned to estrus by Day 19, whereas 80% of roIFNT-infused ewes maintained luteal-phase concentrations of progesterone through Day 32. In conclusion, IFNT is released from the uterus into the uterine vein and acts through an endocrine mechanism to induce ISGs in the CL and delay luteolysis.


Animal Reproduction Science | 2001

Low dose insemination of mares using non-sorted and sex-sorted sperm

A.C. Lindsey; Jason E. Bruemmer; E.L. Squires

Mares are generally inseminated with 500 million progressively motile fresh sperm and approximately 1 billion total sperms that have been cooled or frozen. Development of techniques for low dose insemination would allow one to increase the number of mares that could be bred, utilize stallions with poor semen quality, extend the use of frozen semen, breed mares with sexed semen and perhaps reduce the incidence of post-breeding endometritis. Three low dose insemination techniques that have been reported include: surgical oviductal insemination, deep uterine insemination and hysteroscopic insemination. Insemination techniques: McCue et al. [J. Reprod. Fert. 56 (Suppl.) (2000) 499] reported a 21% pregnancy rate for mares inseminated with 50,000 sperms into the fimbria of the oviduct. Two methods have been reported for deep uterine insemination. In the study of Buchanan et al. [Theriogenology 53 (2000) 1333], a flexible catheter was inserted into the uterine horn ipsilateral to the corpus luteum. The position of the catheter was verified by ultrasound. Insemination of 25 million or 5 million spermatozoa resulted in pregnancy rates of 53 and 35%, respectively. Rigby et al. [Proceedings of 3rd International Symposium on Stallion Reproduction (2001) 49] reported a pregnancy rate of 50% with deep uterine insemination. In their experiment, the flexible catheter was guided into position by rectal manipulation.More studies have reported the results of using hysteroscopic insemination. With this technique, a low number of spermatozoa are placed into or on the uterotubal junction. Manning et al. [Proc. Ann. Mtg. Soc. Theriogenol. (1998) 84] reported a 22% pregnancy rate when 1 million spermatozoa were inserted into the oviduct via the uterotubal junction. Vazquez et al. [Proc. Ann. Mtg. Soc. Theriogenol. (1998) 82] reported a 33% pregnancy rate when 3.8 million spermatozoa were placed on the uterotubal junction. Recently, Morris et al. [J. Reprod. Fert. 188 (2000) 95] utilized the hysteroscopic insemination technique to deposit various numbers of spermatozoa on the uterotubal junction. They reported pregnancy rates of 29, 64, 75 and 60% when 0.5, 1, 5 and 10 million spermatozoa, respectively, were placed on the uterotubal junction. Insemination of sex-sorted spermatozoa: One of the major reasons for low dose insemination is insemination of X- or Y-chromosome-bearing sperm. Through the use of flow cytometry, spermatozoa can be accurately separated into X- or Y-bearing chromosomes. Unfortunately, only 15 million sperms can be sorted per hour. At that rate, it would take several days to sort an insemination dose containing 800 million to 1 billion spermatozoa. Thus, low dose insemination is essential for utilization of sexed sperm. Lindsey [Hysteroscopic insemination with low numbers of fresh and cryopreserved flow-sorted stallion spermatozoa, M.S. Thesis, Colorado State University, Fort Collins, CO, USA, 2000] utilized either deep uterine insemination or hysteroscopic insemination to compare pregnancy rates of mares inseminated with sorted, fresh stallion sperm to those inseminated with non-sorted, fresh stallion sperm. Hysteroscopic insemination resulted in more pregnancies than ultrasound-guided deep uterine insemination. Pregnancy rate was similar for mares bred with either non-sorted or sex-sorted spermatozoa. In a subsequent study, Lindsey et al. [Proceedings of 5th International Symposium on Equine Embryo Transfer (2000) 13] determined if insemination of flow-sorted spermatozoa adversely affected pregnancy rates and whether freezing sex-sorted spermatozoa would result in pregnancies. Mares were assigned to one of four groups: group 1 was inseminated with 5 million non-sorted sperms using hysteroscopic insemination; group 2 was inseminated with 5 million sex-sorted sperms using hysteroscopic insemination; group 3 was inseminated with non-sorted, frozen-thawed sperm; and group 4 was inseminated with sex-sorted frozen sperm. Pregnancy rates were similar for mares inseminated with non-sorted fresh sperm, sex-sorted fresh sperm and non-sorted frozen sperm (40, 37.5 and 37.5%, respectively). Pregnancy rates were reduced dramatically for those inseminated with sex-sorted, frozen-thawed sperm (2 out of 15, 13%). These studies demonstrated that hysteroscopic insemination is a practical and useful technique for obtaining pregnancies with low numbers of fresh spermatozoa or low numbers of frozen-thawed spermatozoa. Further studies are needed to determine if this technique can be used to obtain pregnancies from stallions with poor semen quality. In addition, further studies are needed to develop techniques of freezing sex-sorted spermatozoa.


Reproduction in Domestic Ruminants VI. Proceedings of the Seventh International Symposium on Reproduction in Domestic Ruminants, Wellington, New Zealand, 13-17 August, 2006. | 2007

Judge, jury and executioner: the auto-regulation of luteal function.

G. D. Niswender; Tracy L. Davis; Griffith Rj; Randy L. Bogan; Monser K; Rebecca C. Bott; Jason E. Bruemmer; T. M. Nett

Experiments were conducted to further our understanding of the cellular and molecular mechanisms that regulate luteal function in ewes. Inhibition of protein kinase A (PKA) reduced (P < 0.05) secretion of progesterone from both small and large steroidogenic luteal cells. In addition, the relative phosphorylation state of steriodogenic acute regulatory protein (StAR) was more than twice as high (P < 0.05) in large vs small luteal cells. Large steroidogenic luteal cells appear to contain constitutively active PKA and increased concentrations of phosphorylated StAR which play a role in the increased basal rate of secretion of progesterone. To determine if intraluteal secretion of prostaglandin (PG) F2alpha was required for luteolysis, ewes on day 10 of the estrous cycle received intraluteal implants of a biodegradable polymer containing 0, 1 or 10 mg of indomethacin, to prevent intraluteal synthesis of PGF2alpha. On day 18, luteal weights in ewes receiving 1 mg of indomethacin were greater (P < 0.05) than controls and those receiving 10 mg were greater (P < 0.05) than either of the other two groups. Concentrations of progesterone in serum were also increased (P < 0.05) from days 13 to 16 of the estrous cycle in ewes receiving 10 mg of indomethacin. Although not required for decreased production of progesterone at the end of the cycle, intraluteal secretion of PGF2alpha appears to be required for normal luteolysis. To ascertain if oxytocin mediates the indirect effects of PGF2alpha on small luteal cells, the effects of 0, 0.1, 1 or 10 mM oxytocin on intracellular concentrations of calcium were quantified. There was a dose-dependent increase (P < 0.05) in the number of small luteal cells responding to oxytocin. Thus, oxytocin induces increased calcium levels and perhaps apoptotic cell death in small luteal cells. Concentrations of progesterone, similar to those present in corpora lutea (approximately 30 microg/g), prevented the increased intracellular concentrations of calcium (P < 0.05) stimulated by oxytocin in small cells. In large luteal cells the response to progesterone was variable. There was no consistent effect of high quantities of estradiol, testosterone or cortisol in either cell type. It was concluded that normal luteal concentrations of progesterone prevent the oxytocin and perhaps the PGF2alpha-induced increase in the number of small and large luteal cells which respond to these hormones with increased intracellular concentrations of calcium. In summary, large ovine luteal cells produce high basal levels of progesterone, at least in part, due to a constituitively active form of PKA and an enhanced phosphorylation state of StAR. During luteolysis PGF2alpha of uterine origin reduces the secretion of progesterone from the corpus luteum, but intraluteal production of PGF2alpha is required for normal luteolysis. Binding of PGF2alpha to receptors on large luteal cells stimulates the secretion of oxytocin which appears to activate PKC and may also inhibit steroidogenesis in small luteal cells. PGF2alpha also activates COX-2 in large luteal cells which leads to secretion of PGF2alpha. Once intraluteal concentrations of progesterone have decreased, oxytocin binding to its receptors on small luteal cells also results in increased levels of intracellular calcium and presumably apoptosis. Increased secretion of PGF2alpha from large luteal cells activates calcium channels which likely results in apoptotic death of this cell type.


Theriogenology | 2001

Cryopreservation of equine embryos by open pulled straw, cryoloop, or conventional slow cooling methods

N. Oberstein; M.K. O'Donovan; Jason E. Bruemmer; G.E. Seidel; E.M. Carnevale; E.L. Squires

Cryopreservation of equine embryos with conventional slow-cooling procedures has proven challenging. An alternative approach is vitrification, which can minimize chilling injuries by increasing the rates of cooling and warming. The open pulled straw (OPS) and cryoloop have been used for very rapid cooling and warming rates. The objective of this experiment was to compare efficacy of vitrification of embryos in OPS and the cryoloop to conventional slow cool procedures using 0.25 mL straws. Grade 1 or 2 morulae and early blastocysts (< or = 300 microm in diameter) were recovered from mares on Day 6 or 7 post ovulation. Twenty-seven embryos were assigned to three cryopreservation treatments: (1) conventional slow cooling (0.5 degrees C/min) with 1.8 M ethylene glycol (EG) and 0.1 M sucrose, (4) vitrification in OPS in 16.5% EG, 16.5% DMSO and 0.5 M sucrose, or (3) vitrification with a cryoloop in 17.5% EG, 17.5% DMSO, 1 M sucrose and 0.25 microM ficoll. Embryos were evaluated for size and morphological quality (Grade 1 to 4) before freezing, after thawing, and after culture for 20 h. In addition, propidium iodide (PI) and Hoechst 33342 staining were used to assess percent live cells after culture. There were no differences (P > 0.1) in morphological grade or percent live cells among methods. Mean grades for embryos after culture were 2.9 +/- 0.2, 3.1 +/- 0.1, and 3.3 +/- 0.2 for conventional slow cooling, OPS and cryoloop methods, respectively. Embryo grade and percent live cells were correlated, r = 0.66 (P < 0.004). Thus OPS and the cryoloop were similarly effective to conventional slow-cooling procedures for cryopreserving small equine embryos.


Animal Reproduction Science | 2010

Cholesterol-loaded-cyclodextrins and fertility potential of stallions spermatozoa.

B.E. Spizziri; M.H. Fox; Jason E. Bruemmer; E.L. Squires; J.K. Graham

Irreversible damage occurs to spermatozoal membranes, during the phase transition, when spermatozoa are cooled from room temperature to 5 degrees C. Some of this damage can be ameliorated by adding cholesterol to the membrane, thereby altering membrane lipid composition. Adding cholesterol-loaded cyclodextrins (CLCs) to stallion spermatozoa prior to freezing, increases cell cryosurvival. However, the fertilizing potential of CLC-treated stallion spermatozoa is unknown. To address this, experiments were conducted which evaluated the ability of CLC-treated stallion spermatozoa to capacitate, acrosome react, and bind to the zona pellucida in vitro, and to fertilize oocytes in vivo. When CLC-treated cryopreserved stallion spermatozoa were treated with various agents to induce capacitation and the acrosome reaction (AR), dilauroylphosphatidylcholine (PC-12) and lysophosphatidylcholine (LPC) induced the AR in control cells (62% and 55%, respectively) but not in CLC-treated cells (17% and 14%, respectively, P<0.05). However, the calcium ionophore A23187 induced the AR in both control- and CLC-treated cells equally well (39%, P>0.05). Control- and CLC-treated stallion spermatozoa bound to ZP of cattle oocytes equally well (0.44+/-0.16 vs. 0.25+/-0.09, respectively; P>0.05). In addition, the fertility rates of mares inseminated with control- and CLC-treated sperm were similar (P>0.05).


Theriogenology | 2001

Effect of cooling of equine spermatozoa before freezing on post-thaw motility: Preliminary results

E.C. Crockett; J.K. Graham; Jason E. Bruemmer; E.L. Squires

The ability to ship cooled stallion semen to a facility that specializes in cryopreservation of spermatozoa would permit stallions to remain at home while their semen is cryopreserved at facilities having the equipment and expertise to freeze the semen properly. To accomplish this goal, methods must be developed to freeze cooled shipped semen. Three experiments were conducted to determine the most appropriate spermatozoal extender, package, time of centrifugation, spermatozoal concentration and length of time after collection that spermatozoa can be cooled before cryopreservation. In the first experiment, spermatozoa were centrifuged to remove seminal plasma, resuspended in either a skim milk extender, a skim milk-egg yolk-sugar extender or a skim milk-egg yolk-salt extender, cooled to 5 degreesC and frozen in 0.5- or 2.5-mL straws either 2.5 or 24 h after cooling. Samples frozen 2.5 h after cooling had higher percentages of progressively motile (PM) spermatozoa (27%) than samples frozen 24 h after cooling (10%; P < 0.05). Samples frozen 2.5 h after cooling in skim milk extenders containing egg yolk had higher percentages of PM spermatozoa (average 32%) than did spermatozoa frozen in extender containing skim milk alone (average 16%; P < 0.05). The percentages of PM spermatozoa frozen in 0.5- or 2.5-mL straws were similar (21 and 28%, respectively; P > 0.05). In the second experiment, spermatozoa were centrifuged to remove seminal plasma either before (25 degreesC) or after cooling (5 degreesC), and spermatozoa were frozen after being cooled to 5 degreesC for 2, 6, or 12 h. The percentages of PM spermatozoa were higher (P < 0.05) for spermatozoa centrifuged before cooling (30%) than for spermatozoa centrifuged after cooling (19%). Spermatozoa centrifuged at 25 degreesC then cooled for 12 h to 5 degreesC had higher (P < 0.05) post-thaw progressive motility (23%) compared to spermatozoa cooled for 12 h and centrifuged at 5 degreesC (13%). In the third experiment, spermatozoa were centrifuged for seminal plasma removal, resuspended at spermatozoal concentrations of 50,250 or 500 x 10(6)/mL, cooled to 5 degreesC for 12 h and then frozen. Samples with spermatozoa packaged at 50 or 250 x 10(6)/mL had higher (P < 0.05 percentages of PM spermatozoa (25 and 23%) after freezing than did samples packaged at 500 x 10(6) spermatozoa/mL (17%). We recommend that semen be centrifuged at 25 degreesC to remove seminal plasma, suspended to 250 x 10(6) spermatozoa/ml and held at 5 degreesC for 12 h prior to freezing.


Theriogenology | 2001

Ovarian superstimulatory response and embryo production in mares treated with equine pituitary extract twice daily

Marco Antonio Alvarenga; Patrick M. McCue; Jason E. Bruemmer; J.R. Neves Neto; E.L. Squires

Equine pituitary extract (EPE), has been reported to induce multiple ovulation in mares, however ovulation rates are poor in comparison to those obtained in other species. Attempts to improve the effectiveness of EPE for induction of superovulation in cyclic mares has focused on daily frequency of EPE treatment. Two experiments were performed to compare the ovarian response of cyclic mares given EPE once or twice-daily. Mares were assigned to one of two treatment groups 6 to 8 days after ovulation: prostaglandin was given once and EPE (25 mg) was given once daily (Group 1) or twice daily (Group 2). In Experiment 1, more (P < 0.05) follicles > or = 35 mm were detected in mares treated with EPE twice daily (6.1 +/- 3.1) than in mares treated once a daily (2.0 +/- 0.6). In a second experiment, the embryo recovery rates of mares given the two EPE protocols used in Experiment 1 were compared. The number of ovulations per mare was higher (P < 0.05) for mares treated twice-daily (7.1 +/- 5.1, range 3 to 18) than for mares treated once daily (2.4 +/- 1.8, range 1 to 6). The number of embryos produced per mare was higher (P < 0.05) in mares in Group 2 (3.5) than in Group 1 (1.6). Although it is not clear whether the increased ovulation rate is due specifically to dose or frequency, twice-daily administration of a high dose of EPE significantly improved follicular development, ovulation and embryo recovery over the standard treatment of once-daily injection.


Endocrinology | 2009

Biological and Anatomical Evidence for Kisspeptin Regulation of the Hypothalamic-Pituitary-Gonadal Axis of Estrous Horse Mares

Christianne Magee; Chad D. Foradori; Jason E. Bruemmer; Jesus A. Arreguin-Arevalo; Patrick M. McCue; Robert J. Handa; E.L. Squires; Colin M. Clay

The purpose of the present study was to evaluate the effects of kisspeptin (KiSS) on LH and FSH secretion in the seasonally estrous mare and to examine the distribution and connectivity of GnRH and KiSS neurons in the equine preoptic area (POA) and hypothalamus. The diestrous mare has a threshold serum gonadotropin response to iv rodent KiSS decapeptide (rKP-10) administration between 1.0 and 500 microg. Administration of 500 microg and 1.0 mg rKP-10 elicited peak, mean, and area under the curve LH and FSH responses indistinguishable to that of 25 microg GnRH iv, although a single iv injection of 1.0 mg rKP-10 was insufficient to induce ovulation in the estrous mare. GnRH and KiSS-immunoreactive (ir) cells were identified in the POA and hypothalamus of the diestrous mare. In addition, KiSS-ir fibers were identified in close association with 33.7% of GnRH-ir soma, suggesting a direct action of KiSS on GnRH neurons in the mare. In conclusion, we are the first to reveal a physiological role for KiSS in the diestrous mare with direct anatomic evidence by demonstrating a threshold-like gonadotropin response to KiSS administration and characterizing KiSS and GnRH-ir in the POA and hypothalamus of the diestrous horse mare.

Collaboration


Dive into the Jason E. Bruemmer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerrit J. Bouma

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K.M. Klohonatz

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Colin M. Clay

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

G. D. Niswender

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Rebecca C. Bott

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D.J. Denniston

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

E.M. Carnevale

Colorado State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge