Jason E. Comer
University of Texas Medical Branch
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jason E. Comer.
Infection and Immunity | 2005
Jason E. Comer; Ashok K. Chopra; Johnny W. Peterson; Rolf König
ABSTRACT The causative agent of anthrax, Bacillus anthracis, produces two toxins that contribute in part to its virulence. Lethal toxin is a metalloprotease that cleaves upstream mitogen-activated protein kinase kinases. Edema toxin is a calmodulin-dependent adenylate cyclase. Previous studies demonstrated that the anthrax toxins are important immunomodulators that promote immune evasion of the bacterium by suppressing activation of macrophages and dendritic cells. Here we showed that injection of sublethal doses of either lethal or edema toxin into mice directly inhibited the subsequent activation of T lymphocytes by T-cell receptor-mediated stimulation. Lymphocytes were isolated from toxin-injected mice after 1 or 4 days and stimulated with antibodies against CD3 and CD28. Treatment with either toxin inhibited the proliferation of T cells. Injection of lethal toxin also potently inhibited cytokine secretion by stimulated T cells. The effects of edema toxin on cytokine secretion were more complex and were dependent on the length of time between the injection of edema toxin and the isolation of lymphocytes. Treatment with lethal toxin blocked multiple kinase signaling pathways important for T-cell receptor-mediated activation of T cells. Phosphorylation of the extracellular signal-regulated kinase and the stress-activated kinase p38 was significantly decreased. In addition, phosphorylation of the serine/threonine kinase AKT and of glycogen synthase kinase 3 was inhibited in T cells from lethal toxin-injected mice. Thus, anthrax toxins directly act on T lymphocytes in a mouse model. These findings are important for future anthrax vaccine development and treatment.
Infection and Immunity | 2006
Johnny W. Peterson; Jason E. Comer; David M. Noffsinger; Autumn Wenglikowski; Kristin G. Walberg; Bagram M. Chatuev; Ashok K. Chopra; Lawrence R. Stanberry; Angray S. Kang; Wolfgang W. Scholz; Jagadish Sircar
ABSTRACT Prevention of inhalation anthrax requires early and extended antibiotic therapy, and therefore, alternative treatment strategies are needed. We investigated whether a human monoclonal antibody (AVP-21D9) to protective antigen (PA) would protect mice, guinea pigs, and rabbits against anthrax. Control animals challenged with Bacillus anthracis Ames spores by the intranasal route died within 3 to 7 days. AVP-21D9 alone provided minimal protection against anthrax in the murine model, but its efficacy was notably better in guinea pigs. When Swiss-Webster mice, challenged with five 50% lethal doses (LD50s) of anthrax spores, were given a single 16.7-mg/kg of body weight AVP-21D9 antibody dose combined with ciprofloxacin (30 mg/kg/day for 6 days) 24 h after challenge, 100% of the mice were protected for more than 30 days, while ciprofloxacin or AVP-21D9 alone showed minimal protection. Similarly, when AVP-21D9 antibody (10 to 50 mg/kg) was combined with a low, nonprotective dose of ciprofloxacin (3.7 mg/kg/day) and administered to guinea pigs for 6 days, synergistic protection against anthrax was observed. In contrast, a single dose of AVP-21D9 antibody (1, 5, 10, or 20 mg/kg) but not 0.2 mg/kg alone completely protected rabbits against challenge with 100 LD50s of B. anthracis Ames spores, and 100% of the rabbits survived rechallenge. Further, administration of AVP-21D9 (10 mg/kg) to rabbits at 0, 6, and 12 h after challenge with anthrax spores resulted in 100% survival; however, delay of antibody treatment by 24 and 48 h reduced survival to 80% and 60%, respectively. Serological analysis of sera from various surviving animals 30 days postprimary infection showed development of a species-specific PA enzyme-linked immunosorbent assay antibody titer that correlated with protection against reinfection. Taken together, the effectiveness of human anti-PA antibody alone or in combination with low ciprofloxacin levels may provide the basis for an improved strategy for prophylaxis or treatment following inhalation anthrax infection.
Journal of Biological Chemistry | 2004
Fengwu Li; Thomas J. Templeton; Vsevolod L. Popov; Jason E. Comer; Takafumi Tsuboi; Motomi Torii; Joseph M. Vinetz
The mosquito midgut ookinete stage of the malaria parasite, Plasmodium, possesses microneme secretory organelles that mediate locomotion and midgut wall egress to establish sporogonic stages and subsequent transmission. The purpose of this study was 2-fold: 1) to determine whether there exists a single micronemal population with respect to soluble and membrane-associated secreted proteins; and 2) to evaluate the ookinete micronemal proteins chitinase (PgCHT1), circumsporozoite and TRAP-related protein (CTRP), and von Willebrand factor A domain-related protein (WARP) as immunological targets eliciting sera-blocking malaria parasite infectivity to mosquitoes. Indirect immunofluorescence localization studies in Plasmodium gallinaceum using specific antisera showed that all three proteins are distributed intracellularly with a similar granular cytoplasmic appearance and with focal concentration of PgCHT1 and PgCTRP, but not PgWARP, at the ookinete apical end. Immunogold double-labeling electron microscopy, using antisera against the membrane-associated protein CTRP and the soluble WARP, showed that these two proteins co-localized to the same micronemal population. Within the microneme CTRP was associated peripherally at the microneme membrane, whereas PgCHT1 and WARP were diffuse within the micronemal lumen. Sera produced against Plasmodium falciparum WARP significantly reduced the infectivity of P. gallinaceum to Aedes aegypti and P. falciparum to Anopheles mosquitoes. Antisera against PgCTRP and PgCHT1 also significantly reduced the infectivity of P. gallinaceum for A. aegypti. These results support the concept that ookinete micronemal proteins may constitute a general class of malaria transmission-blocking vaccine candidates.
Infection and Immunity | 2007
Johnny W. Peterson; Jason E. Comer; Wallace B. Baze; David M. Noffsinger; Autumn Wenglikowski; Kristin G. Walberg; Jason Hardcastle; Jennifer Pawlik; Kathryn Bush; Joanna Taormina; Scott T. Moen; John A. Thomas; Bagram M. Chatuev; Laurie Sower; Ashok K. Chopra; Lawrence R. Stanberry; Ritsuko Sawada; Wolfgang W. Scholz; Jagadish Sircar
ABSTRACT Dutch-belted and New Zealand White rabbits were passively immunized with AVP-21D9, a human monoclonal antibody to protective antigen (PA), at the time of Bacillus anthracis spore challenge using either nasal instillation or aerosol challenge techniques. AVP-21D9 (10 mg/kg) completely protected both rabbit strains against lethal infection with Bacillus anthracis Ames spores, regardless of the inoculation method. Further, all but one of the passively immunized animals (23/24) were completely resistant to rechallenge with spores by either respiratory challenge method at 5 weeks after primary challenge. Analysis of the sera at 5 weeks after primary challenge showed that residual human anti-PA levels decreased by 85 to 95%, but low titers of rabbit-specific anti-PA titers were also measured. Both sources of anti-PA could have contributed to protection from rechallenge. In a subsequent study, bacteriological and histopathology analyses revealed that B. anthracis disseminated to the bloodstream in some naïve animals as early as 24 h postchallenge and increased in frequency with time. AVP-21D9 significantly reduced the dissemination of the bacteria to the bloodstream and to various organs following infection. Examination of tissue sections from infected control animals, stained with hematoxylin-eosin and the Gram stain, showed edema and/or hemorrhage in the lungs and the presence of bacteria in mediastinal lymph nodes, with necrosis and inflammation. Tissue sections from infected rabbits dosed with AVP-21D9 appeared comparable to corresponding tissues from uninfected animals despite lethal challenge with B. anthracis Ames spores. Concomitant treatment with AVP-21D9 at the time of challenge conferred complete protection in the rabbit inhalation anthrax model. Early treatment increased the efficacy progressively and in a dose-dependent manner. Thus, AVP-21D9 could offer an adjunct or alternative clinical treatment regimen against inhalation anthrax.
Annals of the New York Academy of Sciences | 2003
Jere W. McBride; Jason E. Comer; David H. Walker
Abstract: We previously identified a strongly immunoreactive 43 kDa protein (p43) of Ehrlichia canis. As an immunodiagnostic antigen, the p43 had a 96% accuracy as compared with IFA and provided species‐specific diagnosis of E. canis infections. Further investigation has revealed that the E. canis p43 represents the N‐terminal portion of the largest immunoreactive protein described in Ehrlichia spp. with a predicted molecular mass of 153 kDa. Analysis of the recombinant N‐terminal region (p43) of the p153 by protein gel electrophoresis demonstrated a larger than predicted molecular mass (∼30%), and presence of carbohydrate glycans, indicating that the p153 is a glycoprotein. A BLASTn search was performed on the E. chaffeensis genome sequence (95%), and the gene encoding the p153 ortholog was identified in E. chaffeensis. The E. canis p153 (4,263 bp) and E. chaffeensis p156 (4,389 bp) genes had similar chromosomal locations, downstream of the homologous (∼87%) deoxyguanosine‐triphosphate triphosphohydrolase genes, and homologous (∼90%) intergenic sequences preceding the open reading frames. Nucleic acid sequence homology (52%) observed between the glycoprotein genes supported previous findings with regard to genetic divergence of the p43 gene fragment, and the p153 and p156 proteins had amino acid similarity of 32%. A native E. canis protein with a molecular mass of 200 kDa reacted with antisera produced against the N‐terminal region (p43) of the p153, suggesting that the native protein was posttranslationally modified. Similarly, recombinant constructs of E. chaffeensis p156 migrated larger than predicted (∼200 kDa), and carbohydrate was detected on the recombinant proteins. The chromosomal location, amino acid homology, and biophysical properties support the conclusion that the p153 and p156 glycoproteins (designated gp200s) are species‐specific immunoreactive orthologs.
Infection and Immunity | 2005
Jason E. Comer; Cristi L. Galindo; Ashok K. Chopra; Johnny W. Peterson
ABSTRACT We performed GeneChip analyses on RNA from Bacillus anthracis lethal toxin (LeTx)-treated RAW 264.7 murine macrophages to investigate global effects of anthrax toxin on host cell gene expression. Stringent analysis of data revealed that the expression of several mitogen-activated protein kinase kinase-regulatory genes was affected within 1.5 h post-exposure to LeTx. By 3.0 h, the expression of 103 genes was altered, including those involved in intracellular signaling, energy production, and protein metabolism.
Journal of Biological Chemistry | 2006
Joseph Horzempa; Jason E. Comer; Sheila A. Davis; Peter Castric
The β-carbon of the Pseudomonas aeruginosa 1244 pilin C-terminal Ser is a site of glycosylation. The present study was conducted to determine the pilin structures necessary for glycosylation. It was found that although Thr could be tolerated at the pilin C terminus, the blocking of the Ser carboxyl group with the addition of an Ala prevented glycosylation. Pilin from strain PA103 was not glycosylated by P. aeruginosa 1244, even when the C-terminal residue was converted to Ser. Substituting the disulfide loop region of strain PA103 pilin with that of strain 1244 allowed glycosylation to take place. Neither conversion of 1244 pilin disulfide loop Cys residues to Ala nor the deletion of segments of this structure prevented glycosylation. It was noted that the PA103 pilin disulfide loop environment was electronegative, whereas that of strain 1244 pilin had an overall positive charge. Insertion of a positive charge into the PA103 pilin disulfide loop of a mutant containing Ser at the C terminus allowed glycosylation to take place. Extending the “tail” region of the PA103 mutant pilin containing Ser at its terminus resulted in robust glycosylation. These results suggest that the terminal Ser is the major pilin glycosylation recognition feature and that this residue cannot be substituted at its carboxyl group. Although no other specific recognition features are present, the pilin surface must be compatible with the reaction apparatus for glycosylation to occur.
Journal of Toxicology and Environmental Health | 2006
Jason E. Comer; David M. Noffsinger; D. J. McHenry; D. M. Weisbaum; Bagram M. Chatuev; Ashok K. Chopra; Johnny W. Peterson
Bacillus anthracis has gained notoriety as a dangerous biological weapon because of its virulence and ability to produce highly resistant spores. In addition, the ability of this organism to produce plasmid-encoded edema toxin (EdTx) and lethal toxin (LeTx) plays a pivotal role in the pathogenesis of anthrax. In this study, the efficacy of quinacrine was evaluated against the effects of anthrax toxins in vitro and its ability to provide protection against challenge with B. anthracis Ames strain spores in an intranasal mouse and guinea pig model. Quinacrine protected murine macrophages in vitro against cytotoxicity and cAMP production induced by LeTx and EdTx, respectively, at concentrations of 40–80 μM, most likely by preventing acidification of the endosomes. However, animals dosed with human equivalent doses of quinacrine were not protected against respiratory spore challenge. The failure of quinacrine to provide protection against inhalation anthrax was attributed to our inability to attain inhibitory concentrations of the drug in the serum or tissues. After daily administration of 43.3 mg quinacrine to guinea pigs (300 g), serum levels after 96 h were only 9.9 μM, a concentration not sufficient to protect macrophages in vitro. Administration of high doses of quinacrine (86.6 mg/kg) was toxic to the animals. These results illustrate some of the difficulties in developing protective therapeutic strategies against inhalation anthrax even when antitoxic drugs appear effective in vitro. This work was supported by a grant from the National Institutes of Health (U01AI5385802) and U.S. Army (DAMD170210699). Jason E. Comer, a predoctoral fellow, was supported by National Institutes of Health T32 Predoctoral Training Grants in Emerging and Tropical Infectious Disease (2T32A8007526) and in Biodefense (1T32AI060549). Bacillus anthracis Ames strain was generously provided by C. Richard Lyons at the University of New Mexico Health Science Center, Albuquerque, NM, and duly registered with the Centers for Disease Control (CDC). The authors appreciate the editorial assistance of Mardelle Susman.
npj Vaccines | 2016
David W C Beasley; Trevor Brasel; Jason E. Comer
The US Food and Drug Administration’s Animal Rule was established to facilitate licensure of new products for life-threatening conditions when traditional efficacy trials in humans are unethical or impractical. In November, 2015 BioThrax became the first vaccine to receive approval for a new indication via this pathway. The basis for this approval and use of Animal Rule or other non-traditional approval pathways for licensure of vaccines for serious conditions are discussed.
Antimicrobial Agents and Chemotherapy | 2017
Sean Ekins; Mary A. Lingerfelt; Jason E. Comer; Alexander N. Freiberg; Jon C. Mirsalis; Kathleen O'Loughlin; Anush Harutyunyan; Claire McFarlane; Carol E. Green; Peter B. Madrid
ABSTRACT Tilorone dihydrochloride (tilorone) is a small-molecule, orally bioavailable drug that is used clinically as an antiviral outside the United States. A machine-learning model trained on anti-Ebola virus (EBOV) screening data previously identified tilorone as a potent in vitro EBOV inhibitor, making it a candidate for the treatment of Ebola virus disease (EVD). In the present study, a series of in vitro ADMET (absorption, distribution, metabolism, excretion, toxicity) assays demonstrated the drug has excellent solubility, high Caco-2 permeability, was not a P-glycoprotein substrate, and had no inhibitory activity against five human CYP450 enzymes (3A4, 2D6, 2C19, 2C9, and 1A2). Tilorone was shown to have 52% human plasma protein binding with excellent plasma stability and a mouse liver microsome half-life of 48 min. Dose range-finding studies in mice demonstrated a maximum tolerated single dose of 100 mg/kg of body weight. A pharmacokinetics study in mice at 2- and 10-mg/kg dose levels showed that the drug is rapidly absorbed, has dose-dependent increases in maximum concentration of unbound drug in plasma and areas under the concentration-time curve, and has a half-life of approximately 18 h in both males and females, although the exposure was ∼2.5-fold higher in male mice. Tilorone doses of 25 and 50 mg/kg proved efficacious in protecting 90% of mice from a lethal challenge with mouse-adapted with once-daily intraperitoneal (i.p.) dosing for 8 days. A subsequent study showed that 30 mg/kg/day of tilorone given i.p. starting 2 or 24 h postchallenge and continuing through day 7 postinfection was fully protective, indicating promising activity for the treatment of EVD.