Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason Ernst is active.

Publication


Featured researches published by Jason Ernst.


Nature | 2011

Mapping and analysis of chromatin state dynamics in nine human cell types

Jason Ernst; Pouya Kheradpour; Tarjei S. Mikkelsen; Noam Shoresh; Lucas D. Ward; Charles B. Epstein; Xiaolan Zhang; Lili Wang; Robbyn Issner; Michael J. Coyne; Manching Ku; Timothy Durham; Manolis Kellis; Bradley E. Bernstein

Chromatin profiling has emerged as a powerful means of genome annotation and detection of regulatory activity. The approach is especially well suited to the characterization of non-coding portions of the genome, which critically contribute to cellular phenotypes yet remain largely uncharted. Here we map nine chromatin marks across nine cell types to systematically characterize regulatory elements, their cell-type specificities and their functional interactions. Focusing on cell-type-specific patterns of promoters and enhancers, we define multicell activity profiles for chromatin state, gene expression, regulatory motif enrichment and regulator expression. We use correlations between these profiles to link enhancers to putative target genes, and predict the cell-type-specific activators and repressors that modulate them. The resulting annotations and regulatory predictions have implications for the interpretation of genome-wide association studies. Top-scoring disease single nucleotide polymorphisms are frequently positioned within enhancer elements specifically active in relevant cell types, and in some cases affect a motif instance for a predicted regulator, thus suggesting a mechanism for the association. Our study presents a general framework for deciphering cis-regulatory connections and their roles in disease.


Science | 2010

Identification of functional elements and regulatory circuits by Drosophila modENCODE

Sushmita Roy; Jason Ernst; Peter V. Kharchenko; Pouya Kheradpour; Nicolas Nègre; Matthew L. Eaton; Jane M. Landolin; Christopher A. Bristow; Lijia Ma; Michael F. Lin; Stefan Washietl; Bradley I. Arshinoff; Ferhat Ay; Patrick E. Meyer; Nicolas Robine; Nicole L. Washington; Luisa Di Stefano; Eugene Berezikov; Christopher D. Brown; Rogerio Candeias; Joseph W. Carlson; Adrian Carr; Irwin Jungreis; Daniel Marbach; Rachel Sealfon; Michael Y. Tolstorukov; Sebastian Will; Artyom A. Alekseyenko; Carlo G. Artieri; Benjamin W. Booth

From Genome to Regulatory Networks For biologists, having a genome in hand is only the beginning—much more investigation is still needed to characterize how the genome is used to help to produce a functional organism (see the Perspective by Blaxter). In this vein, Gerstein et al. (p. 1775) summarize for the Caenorhabditis elegans genome, and The modENCODE Consortium (p. 1787) summarize for the Drosophila melanogaster genome, full transcriptome analyses over developmental stages, genome-wide identification of transcription factor binding sites, and high-resolution maps of chromatin organization. Both studies identified regions of the nematode and fly genomes that show highly occupied targets (or HOT) regions where DNA was bound by more than 15 of the transcription factors analyzed and the expression of related genes were characterized. Overall, the studies provide insights into the organization, structure, and function of the two genomes and provide basic information needed to guide and correlate both focused and genome-wide studies. The Drosophila modENCODE project demonstrates the functional regulatory network of flies. To gain insight into how genomic information is translated into cellular and developmental programs, the Drosophila model organism Encyclopedia of DNA Elements (modENCODE) project is comprehensively mapping transcripts, histone modifications, chromosomal proteins, transcription factors, replication proteins and intermediates, and nucleosome properties across a developmental time course and in multiple cell lines. We have generated more than 700 data sets and discovered protein-coding, noncoding, RNA regulatory, replication, and chromatin elements, more than tripling the annotated portion of the Drosophila genome. Correlated activity patterns of these elements reveal a functional regulatory network, which predicts putative new functions for genes, reveals stage- and tissue-specific regulators, and enables gene-expression prediction. Our results provide a foundation for directed experimental and computational studies in Drosophila and related species and also a model for systematic data integration toward comprehensive genomic and functional annotation.


Nature Methods | 2012

ChromHMM: automating chromatin-state discovery and characterization

Jason Ernst; Manolis Kellis

Chromatin state annotation using combinations of chromatin modification patterns has emerged as a powerful approach for discovering regulatory regions and their cell type specific activity patterns, and for interpreting disease-association studies1-5. However, the computational challenge of learning chromatin state models from large numbers of chromatin modification datasets in multiple cell types still requires extensive bioinformatics expertise making it inaccessible to the wider scientific community. To address this challenge, we have developed ChromHMM, an automated computational system for learning chromatin states, characterizing their biological functions and correlations with large-scale functional datasets, and visualizing the resulting genome-wide maps of chromatin state annotations.


Nature | 2011

A high-resolution map of human evolutionary constraint using 29 mammals

Kerstin Lindblad-Toh; Manuel Garber; Or Zuk; Michael F. Lin; Brian J. Parker; Stefan Washietl; Pouya Kheradpour; Jason Ernst; Gregory Jordan; Evan Mauceli; Lucas D. Ward; Craig B. Lowe; Alisha K. Holloway; Michele Clamp; Sante Gnerre; Jessica Alföldi; Kathryn Beal; Jean Chang; Hiram Clawson; James Cuff; Federica Di Palma; Stephen Fitzgerald; Paul Flicek; Mitchell Guttman; Melissa J. Hubisz; David B. Jaffe; Irwin Jungreis; W. James Kent; Dennis Kostka; Marcia Lara

The comparison of related genomes has emerged as a powerful lens for genome interpretation. Here we report the sequencing and comparative analysis of 29 eutherian genomes. We confirm that at least 5.5% of the human genome has undergone purifying selection, and locate constrained elements covering ∼4.2% of the genome. We use evolutionary signatures and comparisons with experimental data sets to suggest candidate functions for ∼60% of constrained bases. These elements reveal a small number of new coding exons, candidate stop codon readthrough events and over 10,000 regions of overlapping synonymous constraint within protein-coding exons. We find 220 candidate RNA structural families, and nearly a million elements overlapping potential promoter, enhancer and insulator regions. We report specific amino acid residues that have undergone positive selection, 280,000 non-coding elements exapted from mobile elements and more than 1,000 primate- and human-accelerated elements. Overlap with disease-associated variants indicates that our findings will be relevant for studies of human biology, health and disease.


BMC Bioinformatics | 2006

STEM: a tool for the analysis of short time series gene expression data

Jason Ernst; Ziv Bar-Joseph

BackgroundTime series microarray experiments are widely used to study dynamical biological processes. Due to the cost of microarray experiments, and also in some cases the limited availability of biological material, about 80% of microarray time series experiments are short (3–8 time points). Previously short time series gene expression data has been mainly analyzed using more general gene expression analysis tools not designed for the unique challenges and opportunities inherent in short time series gene expression data.ResultsWe introduce the Short Time-series Expression Miner (STEM) the first software program specifically designed for the analysis of short time series microarray gene expression data. STEM implements unique methods to cluster, compare, and visualize such data. STEM also supports efficient and statistically rigorous biological interpretations of short time series data through its integration with the Gene Ontology.ConclusionThe unique algorithms STEM implements to cluster and compare short time series gene expression data combined with its visualization capabilities and integration with the Gene Ontology should make STEM useful in the analysis of data from a significant portion of all microarray studies. STEM is available for download for free to academic and non-profit users at http://www.cs.cmu.edu/~jernst/stem.


intelligent systems in molecular biology | 2005

Clustering short time series gene expression data

Jason Ernst; Gerard J. Nau; Ziv Bar-Joseph

MOTIVATION Time series expression experiments are used to study a wide range of biological systems. More than 80% of all time series expression datasets are short (8 time points or fewer). These datasets present unique challenges. On account of the large number of genes profiled (often tens of thousands) and the small number of time points many patterns are expected to arise at random. Most clustering algorithms are unable to distinguish between real and random patterns. RESULTS We present an algorithm specifically designed for clustering short time series expression data. Our algorithm works by assigning genes to a predefined set of model profiles that capture the potential distinct patterns that can be expected from the experiment. We discuss how to obtain such a set of profiles and how to determine the significance of each of these profiles. Significant profiles are retained for further analysis and can be combined to form clusters. We tested our method on both simulated and real biological data. Using immune response data we show that our algorithm can correctly detect the temporal profile of relevant functional categories. Using Gene Ontology analysis we show that our algorithm outperforms both general clustering algorithms and algorithms designed specifically for clustering time series gene expression data. AVAILABILITY Information on obtaining a Java implementation with a graphical user interface (GUI) is available from http://www.cs.cmu.edu/~jernst/st/ SUPPLEMENTARY INFORMATION Available at http://www.cs.cmu.edu/~jernst/st/


Nature Neuroscience | 2014

Alzheimer's disease: early alterations in brain DNA methylation at ANK1 , BIN1 , RHBDF2 and other loci

Philip L. De Jager; Gyan Srivastava; Katie Lunnon; Jeremy D. Burgess; Leonard C. Schalkwyk; Lei Yu; Matthew L. Eaton; Brendan T. Keenan; Jason Ernst; Cristin McCabe; Anna Tang; Towfique Raj; Joseph M. Replogle; Wendy Brodeur; Stacey Gabriel; High Seng Chai; Curtis S. Younkin; Steven G. Younkin; Fanggeng Zou; Moshe Szyf; Charles B. Epstein; Julie A. Schneider; Bradley E. Bernstein; Alexander Meissner; Nilufer Ertekin-Taner; Lori B. Chibnik; Manolis Kellis; Jonathan Mill; David A. Bennett

We used a collection of 708 prospectively collected autopsied brains to assess the methylation state of the brains DNA in relation to Alzheimers disease (AD). We found that the level of methylation at 71 of the 415,848 interrogated CpGs was significantly associated with the burden of AD pathology, including CpGs in the ABCA7 and BIN1 regions, which harbor known AD susceptibility variants. We validated 11 of the differentially methylated regions in an independent set of 117 subjects. Furthermore, we functionally validated these CpG associations and identified the nearby genes whose RNA expression was altered in AD: ANK1, CDH23, DIP2A, RHBDF2, RPL13, SERPINF1 and SERPINF2. Our analyses suggest that these DNA methylation changes may have a role in the onset of AD given that we observed them in presymptomatic subjects and that six of the validated genes connect to a known AD susceptibility gene network.


Nucleic Acids Research | 2013

Integrative annotation of chromatin elements from ENCODE data

Michael M. Hoffman; Jason Ernst; Steven P. Wilder; Anshul Kundaje; Robert S. Harris; Max Libbrecht; Belinda Giardine; Paul M. Ellenbogen; Jeff A. Bilmes; Ewan Birney; Ross C. Hardison; Ian Dunham; Manolis Kellis; William Stafford Noble

The ENCODE Project has generated a wealth of experimental information mapping diverse chromatin properties in several human cell lines. Although each such data track is independently informative toward the annotation of regulatory elements, their interrelations contain much richer information for the systematic annotation of regulatory elements. To uncover these interrelations and to generate an interpretable summary of the massive datasets of the ENCODE Project, we apply unsupervised learning methodologies, converting dozens of chromatin datasets into discrete annotation maps of regulatory regions and other chromatin elements across the human genome. These methods rediscover and summarize diverse aspects of chromatin architecture, elucidate the interplay between chromatin activity and RNA transcription, and reveal that a large proportion of the genome lies in a quiescent state, even across multiple cell types. The resulting annotation of non-coding regulatory elements correlate strongly with mammalian evolutionary constraint, and provide an unbiased approach for evaluating metrics of evolutionary constraint in human. Lastly, we use the regulatory annotations to revisit previously uncharacterized disease-associated loci, resulting in focused, testable hypotheses through the lens of the chromatin landscape.


Cell | 2011

Combinatorial patterning of chromatin regulators uncovered by genome-wide location analysis in human cells.

Oren Ram; Alon Goren; Ido Amit; Noam Shoresh; Nir Yosef; Jason Ernst; Manolis Kellis; Melissa Gymrek; Robbyn Issner; Michael J. Coyne; Timothy Durham; Xiaolan Zhang; Julie Donaghey; Charles B. Epstein; Aviv Regev; Bradley E. Bernstein

Hundreds of chromatin regulators (CRs) control chromatin structure and function by catalyzing and binding histone modifications, yet the rules governing these key processes remain obscure. Here, we present a systematic approach to infer CR function. We developed ChIP-string, a meso-scale assay that combines chromatin immunoprecipitation with a signature readout of 487 representative loci. We applied ChIP-string to screen 145 antibodies, thereby identifying effective reagents, which we used to map the genome-wide binding of 29 CRs in two cell types. We found that specific combinations of CRs colocalize in characteristic patterns at distinct chromatin environments, at genes of coherent functions, and at distal regulatory elements. When comparing between cell types, CRs redistribute to different loci but maintain their modular and combinatorial associations. Our work provides a multiplex method that substantially enhances the ability to monitor CR binding, presents a large resource of CR maps, and reveals common principles for combinatorial CR function.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Intracellular crowding defines the mode and sequence of substrate uptake by Escherichia coli and constrains its metabolic activity.

Qasim K. Beg; Alexei Vazquez; Jason Ernst; M. A. de Menezes; Ziv Bar-Joseph; Albert-László Barabási; Zoltán N. Oltvai

The influence of the high intracellular concentration of macromolecules on cell physiology is increasingly appreciated, but its impact on system-level cellular functions remains poorly quantified. To assess its potential effect, here we develop a flux balance model of Escherichia coli cell metabolism that takes into account a systems-level constraint for the concentration of enzymes catalyzing the various metabolic reactions in the crowded cytoplasm. We demonstrate that the models predictions for the relative maximum growth rate of wild-type and mutant E. coli cells in single substrate-limited media, and the sequence and mode of substrate uptake and utilization from a complex medium are in good agreement with subsequent experimental observations. These results suggest that molecular crowding represents a bound on the achievable functional states of a metabolic network, and they indicate that models incorporating this constraint can systematically identify alterations in cellular metabolism activated in response to environmental change.

Collaboration


Dive into the Jason Ernst's collaboration.

Top Co-Authors

Avatar

Manolis Kellis

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Pouya Kheradpour

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ziv Bar-Joseph

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lucas D. Ward

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Petko Fiziev

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irwin Jungreis

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge