Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason G. Cyster is active.

Publication


Featured researches published by Jason G. Cyster.


Nature | 2004

Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1

Mehrdad Matloubian; Charles G. Lo; Guy Cinamon; Matthew J. Lesneski; Ying Xu; Volker Brinkmann; Maria L. Allende; Richard L. Proia; Jason G. Cyster

Adaptive immunity depends on T-cell exit from the thymus and T and B cells travelling between secondary lymphoid organs to survey for antigens. After activation in lymphoid organs, T cells must again return to circulation to reach sites of infection; however, the mechanisms regulating lymphoid organ exit are unknown. An immunosuppressant drug, FTY720, inhibits lymphocyte emigration from lymphoid organs, and phosphorylated FTY720 binds and activates four of the five known sphingosine-1-phosphate (S1P) receptors. However, the role of S1P receptors in normal immune cell trafficking is unclear. Here we show that in mice whose haematopoietic cells lack a single S1P receptor (S1P1; also known as Edg1) there are no T cells in the periphery because mature T cells are unable to exit the thymus. Although B cells are present in peripheral lymphoid organs, they are severely deficient in blood and lymph. Adoptive cell transfer experiments establish an intrinsic requirement for S1P1 in T and B cells for lymphoid organ egress. Furthermore, S1P1-dependent chemotactic responsiveness is strongly upregulated in T-cell development before exit from the thymus, whereas S1P1 is downregulated during peripheral lymphocyte activation, and this is associated with retention in lymphoid organs. We find that FTY720 treatment downregulates S1P1, creating a temporary pharmacological S1P1-null state in lymphocytes, providing an explanation for the mechanism of FTY720-induced lymphocyte sequestration. These findings establish that S1P1 is essential for lymphocyte recirculation and that it regulates egress from both thymus and peripheral lymphoid organs.


Nature | 2000

A chemokine-driven positive feedback loop organizes lymphoid follicles.

K. Mark Ansel; Vu N. Ngo; Paul L. Hyman; Sanjiv A. Luther; Reinhold Förster; Jonathon D. Sedgwick; Jeffrey L. Browning; Martin Lipp; Jason G. Cyster

Lymphoid follicles are B-cell-rich compartments of lymphoid organs that function as sites of B-cell antigen encounter and differentiation. CXC chemokine receptor-5 (CXCR5) is required for B-cell migration to splenic follicles, but the requirements for homing to B-cell areas in lymph nodes remain to be defined. Here we show that lymph nodes contain two types of B-cell-rich compartment: follicles containing follicular dendritic cells, and areas lacking such cells. Using gene-targeted mice, we establish that B-lymphocyte chemoattractant (BLC/BCA1) and its receptor, CXCR5, are needed for B-cell homing to follicles in lymph nodes as well as in spleen. We also find that BLC is required for the development of most lymph nodes and Peyers patches. In addition to mediating chemoattraction, BLC induces B cells to upregulate membrane lymphotoxin α1β2, a cytokine that promotes follicular dendritic cell development and BLC expression, establishing a positive feedback loop that is likely to be important in follicle development and homeostasis. In germinal centres the feedback loop is overridden, with B-cell lymphotoxin α1β2 expression being induced by a mechanism independent of BLC.


Nature Immunology | 2002

Langerhans cells renew in the skin throughout life under steady-state conditions

Miriam Merad; Markus G. Manz; Holger Karsunky; Amy J. Wagers; Wendy Peters; Israel F. Charo; Irving L. Weissman; Jason G. Cyster; Edgar G. Engleman

Langerhans cells (LCs) are bone marrow (BM)–derived epidermal dendritic cells (DCs) that represent a critical immunologic barrier to the external environment, but little is known about their life cycle. Here, we show that in lethally irradiated mice that had received BM transplants, LCs of host origin remained for at least 18 months, whereas DCs in other organs were almost completely replaced by donor cells within 2 months. In parabiotic mice with separate organs, but a shared blood circulation, there was no mixing of LCs. However, in skin exposed to ultraviolet light, LCs rapidly disappeared and were replaced by circulating LC precursors within 2 weeks. The recruitment of new LCs was dependent on their expression of the CCR2 chemokine receptor and on the secretion of CCR2-binding chemokines by inflamed skin. These data indicate that under steady-state conditions, LCs are maintained locally, but inflammatory changes in the skin result in their replacement by blood-borne LC progenitors.


Nature | 2006

CD69 acts downstream of interferon-|[alpha]|/|[beta]| to inhibit S1P1 and lymphocyte egress from lymphoid organs

Lawrence R. Shiow; David B. Rosen; Naděžda Brdičková; Ying Xu; Jinping An; Lewis L. Lanier; Jason G. Cyster; Mehrdad Matloubian

Naive lymphocytes continually enter and exit lymphoid organs in a recirculation process that is essential for immune surveillance. During immune responses, the egress process can be shut down transiently. When this occurs locally it increases lymphocyte numbers in the responding lymphoid organ; when it occurs systemically it can lead to immunosuppression as a result of the depletion of recirculating lymphocytes. Several mediators of the innate immune system are known to cause shutdown, including interferon α/β (IFN-α/β) and tumour necrosis factor, but the mechanism has been unclear. Here we show that treatment with the IFN-α/β inducer polyinosine polycytidylic acid (hereafter ‘poly(I:C)’) inhibited egress by a mechanism that was partly lymphocyte-intrinsic. The transmembrane C-type lectin CD69 was rapidly induced and CD69-/- cells were poorly retained in lymphoid tissues after treatment with poly(I:C) or infection with lymphocytic choriomeningitis virus. Lymphocyte egress requires sphingosine 1-phosphate receptor-1 (S1P1), and IFN-α/β was found to inhibit lymphocyte responsiveness to S1P. By contrast, CD69-/- cells retained S1P1 function after exposure to IFN-α/β. In coexpression experiments, CD69 inhibited S1P1 chemotactic function and led to downmodulation of S1P1. In a reporter assay, S1P1 crosslinking led to co-crosslinking and activation of a CD69–CD3ζ chimaera. CD69 co-immunoprecipitated with S1P1 but not the related receptor, S1P3. These observations indicate that CD69 forms a complex with and negatively regulates S1P1 and that it functions downstream of IFN-α/β, and possibly other activating stimuli, to promote lymphocyte retention in lymphoid organs.


Nature | 1998

A B-cell-homing chemokine made in lymphoid follicles activates Burkitt's lymphoma receptor-1

Michael D. Gunn; Vu N. Ngo; K. Mark Ansel; Eric H. Ekland; Jason G. Cyster; Lewis T. Williams

Secondary lymphoid organs (spleen, lymph nodes and Peyers patches) are divided into compartments, such as B-cell zones (follicles) and T-cell zones, which provide specialized environments for specific steps of the immune response. Migration of lymphocyte subsets into these compartments is essential for normal immune function, yet the molecular cues guiding this cellular traffic are poorly defined. Chemokines constitute a family of chemotactic cytokines that have been shown to direct the migration of leukocytes during inflammation, and which may be involved in the constitutive homing of lymphocytes into follicles and T-cell zones. Here we describe a novel chemokine, B-lymphocyte chemoattractant (BLC), that is strongly expressed in the follicles of Peyers patches, the spleen and lymph nodes. BLC strongly attracts B lymphocytes while promoting migration of only small numbers of T cells and macrophages, and therefore is the first chemokine to be identified that is selective towards B cells. An orphan chemokine receptor, Burkitts lymphoma receptor 1 (BLR-1), has been found to be required for B-cell migration into lymphoid follicles. We show that BLC stimulates calcium influx into, and chemotaxis of, cells transfected with BLR-1. Our results indicate that BLC functions as a BLR-1 ligand and may guide B lymphocytes to follicles in secondary lymphoid organs.


Nature Immunology | 2001

Chemokines as regulators of T cell differentiation.

Sanjiv A. Luther; Jason G. Cyster

Chemokines play well established roles as attractants of naïve and effector T cells. New studies indicate that chemokines also have roles in regulating T cell differentiation. Blocking Gi protein–coupled receptor signaling by pertussis toxin as well as deficiencies in Gαi2, chemokine receptor 2 (CCR2), CCR5, chemokine ligand 2 (CCL2, also known as monocyte chemoattractant protein 1, or MCP-1), CCL3 (macrophage inflammatory protein 1α, or MIP-1α) and CCL5 (RANTES) have all been found to have effects on the magnitude and cytokine polarity of the T cell response. Here we focus on findings in the CCL2-CCR2 and CCL3-CCR5 ligand-receptor systems. The roles of these molecules in regulating T cell fate include possible indirect effects on antigen-presenting cells and direct effects on differentiating T cells. Models to account for the action of chemokines and G protein–coupled receptor signals in regulating T cell differentiation are discussed.


Nature Immunology | 2007

Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells.

Alexander Link; Tobias K. Vogt; Stéphanie Favre; Mirjam R. Britschgi; Hans Acha-Orbea; Boris Hinz; Jason G. Cyster; Sanjiv A. Luther

Interleukin 7 is essential for the survival of naive T lymphocytes. Despite its importance, its cellular source in the periphery remains poorly defined. Here we report a critical function for lymph node access in T cell homeostasis and identify T zone fibroblastic reticular cells in these organs as the main source of interleukin 7. In vitro, T zone fibroblastic reticular cells were able to prevent the death of naive T lymphocytes but not of B lymphocytes by secreting interleukin 7 and the CCR7 ligand CCL19. Using gene-targeted mice, we demonstrate a nonredundant function for CCL19 in T cell homeostasis. Our data suggest that lymph nodes and T zone fibroblastic reticular cells have a key function in naive CD4+ and CD8+ T cell homeostasis by providing a limited reservoir of survival factors.


Nature Immunology | 2000

A transmembrane CXC chemokine is a ligand for HIV-coreceptor Bonzo.

Mehrdad Matloubian; Anat David; Sharon Engel; Jay E. Ryan; Jason G. Cyster

We describe a protein with the hallmarks of a chemokine, designated CXCL16, that is made by dendritic cells (DCs) in lymphoid organ T cell zones and by cells in the splenic red pulp. CXCL16 contains a transmembrane domain and both membrane-bound and soluble forms are produced. Naïve CD8 T cells, natural killer T cells and a subset of memory CD4 T cells bind CXCL16, and activated T cells migrated chemotactically to the soluble chemokine. By expression cloning, Bonzo (also known as STRL33 and TYMSTR) was identified as a CXCL16 receptor. CXCL16 may function in promoting interactions between DCs and CD8 T cells and in guiding T cell movements in the splenic red pulp. CXCL16 was also found in the thymic medulla and in some nonlymphoid tissues, indicating roles in thymocyte development and effector T cell trafficking.


Immunity | 2004

Reduced Competitiveness of Autoantigen-Engaged B Cells due to Increased Dependence on BAFF

Robin Lesley; Ying Xu; Susan L. Kalled; Donna M. Hess; Susan R. Schwab; Hong-Bing Shu; Jason G. Cyster

Peripheral autoantigen binding B cells are poorly competitive with naive B cells for survival and undergo rapid cell death. However, in monoclonal Ig-transgenic mice lacking competitor B cells, autoantigen binding B cells can survive for extended periods. The basis for competitive elimination of autoantigen binding B cells has been unknown. Here we demonstrate that autoantigen binding B cells have increased dependence on BAFF for survival. In monoclonal Ig-transgenic mice, each autoantigen binding B cell receives elevated amounts of BAFF, exhibiting increased levels of NFkappaB p52 and of the prosurvival kinase Pim2. When placed in a diverse B cell compartment, BAFF receptor engagement and signaling are reduced and the autoantigen binding cells are unable to protect themselves from Bim and possibly other death-promoting factors induced by chronic BCR signaling. These findings indicate that under conditions where BAFF levels are elevated, autoantigen-engaged cells will be rescued from rapid competitive elimination, predisposing to the development of autoimmune disease.


Nature | 2002

Balanced responsiveness to chemoattractants from adjacent zones determines B-cell position

Karin Reif; Eric H. Ekland; Lars Ohl; Hideki Nakano; Martin Lipp; Reinhold Förster; Jason G. Cyster

B lymphocytes re-circulate between B-cell-rich compartments (follicles or B zones) in secondary lymphoid organs, surveying for antigen. After antigen binding, B cells move to the boundary of B and T zones to interact with T-helper cells. Despite the importance of B–T-cell interactions for the induction of antibody responses, the mechanism causing B-cell movement to the T zone has not been defined. Here we show that antigen-engaged B cells have increased expression of CCR7, the receptor for the T-zone chemokines CCL19 and CCL21, and that they exhibit increased responsiveness to both chemoattractants. In mice lacking lymphoid CCL19 and CCL21 chemokines, or with B cells that lack CCR7, antigen engagement fails to cause movement to the T zone. Using retroviral-mediated gene transfer we demonstrate that increased expression of CCR7 is sufficient to direct B cells to the T zone. Reciprocally, overexpression of CXCR5, the receptor for the B-zone chemokine CXCL13, is sufficient to overcome antigen-induced B-cell movement to the T zone. These findings define the mechanism of B-cell relocalization in response to antigen, and establish that cell position in vivo can be determined by the balance of responsiveness to chemoattractants made in separate but adjacent zones.

Collaboration


Dive into the Jason G. Cyster's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vu N. Ngo

University of California

View shared research outputs
Top Co-Authors

Avatar

Takaharu Okada

University of California

View shared research outputs
Top Co-Authors

Avatar

Jinping An

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. Mark Ansel

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge