Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason G. D. Gall is active.

Publication


Featured researches published by Jason G. D. Gall.


The Journal of Infectious Diseases | 2006

Phase 1 Safety and Immunogenicity Evaluation of a Multiclade HIV‐1 Candidate Vaccine Delivered by a Replication‐Defective Recombinant Adenovirus Vector

Andrew T. Catanzaro; Richard A. Koup; Mario Roederer; Robert T. Bailer; Mary E. Enama; Zoe Moodie; Lin Gu; Julie E. Martin; Laura Novik; Bimal K. Chakrabarti; Bryan T. Butman; Jason G. D. Gall; C. Richter King; Charla A. Andrews; Rebecca L. Sheets; Phillip L. Gomez; John R. Mascola; Gary J. Nabel

BACKGROUND The development of an effective human immunodeficiency virus (HIV) vaccine is a high global priority. Here, we report the safety, tolerability, and immunogenicity of a replication-defective recombinant adenovirus serotype 5 (rAd5) vector HIV-1 candidate vaccine. METHODS The vaccine is a mixture of 4 rAd5 vectors that express HIV-1 subtype B Gag-Pol fusion protein and envelope (Env) from subtypes A, B, and C. Healthy, uninfected adults were randomized to receive 1 intramuscular injection of placebo (n=6) or vaccine at dose levels of 10(9) (n=10), 10(10) (n=10), or 10(11) (n=10) particle units and were followed for 24 weeks to assess immunogenicity and safety. RESULTS The vaccine was well tolerated but was associated with more reactogenicity at the highest dose. At week 4, vaccine antigen-specific T cell responses were detected in 28 (93.3%) and 18 (60%) of 30 vaccine recipients for CD4(+) and CD8(+) T cells, respectively, by intracellular cytokine staining assay and in 22 (73%) of 30 vaccine recipients by enzyme-linked immunospot assay. Env-specific antibody responses were detected in 15 (50%) of 30 vaccine recipients by enzyme-linked immunosorbant assay and in 28 (93.3%) of 30 vaccine recipients by immunoprecipitation followed by Western blotting. No neutralizing antibody was detected. CONCLUSIONS A single injection induced HIV-1 antigen-specific CD4(+) T cell, CD8(+) T cell, and antibody responses in the majority of vaccine recipients. This multiclade rAd5 HIV-1 vaccine is now being evaluated in combination with a multiclade HIV-1 DNA plasmid vaccine.


PLOS Pathogens | 2007

Mechanism of Ad5 Vaccine Immunity and Toxicity: Fiber Shaft Targeting of Dendritic Cells

Cheng Cheng; Jason G. D. Gall; Wing-Pui Kong; Rebecca L. Sheets; Phillip L. Gomez; C. Richter King; Gary J. Nabel

Recombinant adenoviral (rAd) vectors elicit potent cellular and humoral immune responses and show promise as vaccines for HIV-1, Ebola virus, tuberculosis, malaria, and other infections. These vectors are now widely used and have been generally well tolerated in vaccine and gene therapy clinical trials, with many thousands of people exposed. At the same time, dose-limiting adverse responses have been observed, including transient low-grade fevers and a prior human gene therapy fatality, after systemic high-dose recombinant adenovirus serotype 5 (rAd5) vector administration in a human gene therapy trial. The mechanism responsible for these effects is poorly understood. Here, we define the mechanism by which Ad5 targets immune cells that stimulate adaptive immunity. rAd5 tropism for dendritic cells (DCs) was independent of the coxsackievirus and adenovirus receptor (CAR), its primary receptor or the secondary integrin RGD receptor, and was mediated instead by a heparin-sensitive receptor recognized by a distinct segment of the Ad5 fiber, the shaft. rAd vectors with CAR and RGD mutations did not infect a variety of epithelial and fibroblast cell types but retained their ability to transfect several DC types and stimulated adaptive immune responses in mice. Notably, the pyrogenic response to the administration of rAd5 also localized to the shaft region, suggesting that this interaction elicits both protective immunity and vector-induced fevers. The ability of replication-defective rAd5 viruses to elicit potent immune responses is mediated by a heparin-sensitive receptor that interacts with the Ad5 fiber shaft. Mutant CAR and RGD rAd vectors target several DC and mononuclear subsets and induce both adaptive immunity and toxicity. Understanding of these interactions facilitates the development of vectors that target DCs through alternative receptors that can improve safety while retaining the immunogenicity of rAd vaccines.


Journal of Virology | 2003

Subgroup B and F Fiber Chimeras Eliminate Normal Adenovirus Type 5 Vector Transduction In Vitro and In Vivo

John W. Schoggins; Jason G. D. Gall; Erik Falck-Pedersen

ABSTRACT Altering adenovirus vector (Ad vector) targeting is an important goal for a variety of gene therapy applications and involves eliminating or reducing the normal tropism of a vector and retargeting through a distinct receptor-ligand pathway. The first step of Ad vector infection is high-affinity binding to a target cellular receptor. For the majority of adenoviruses and Ad vectors, the fiber capsid protein serves this purpose, binding to the coxsackievirus and adenovirus receptor (CAR) present on a variety of cell types. In this study we have explored a novel approach to altering Ad type 5 (Ad5) vector targeting based on serotypic differences in fiber function. The subgroup B viruses bind to an unidentified receptor that is distinct from CAR. The subgroup F viruses are the only adenoviruses that express two distinct terminal exons encoding fiber open reading frames. We have constructed chimeric fiber adenoviruses that utilize the tandem fiber arrangement of the subgroup F genome configuration. By taking advantage of serotypic differences in fiber expression, fiber shaft length, and fiber binding efficiency, we have developed a tandem fiber vector that has low binding efficiency for the known fiber binding sites, does not rely on an Ad5-based fiber, and can be grown to high titer using conventional cell lines. Importantly, when characterizing these vectors in vivo, we find the subgroup B system and our optimal tandem fiber system demonstrate reduced liver transduction by over 2 logs compared to an Ad5 fiber vector. These attributes make the tandem fiber vector a useful alternative to conventional strategies for fiber manipulation of adenovirus vectors.


Journal of Immunology | 2010

CD8+ T Cell Responses following Replication-Defective Adenovirus Serotype 5 Immunization Are Dependent on CD11c+ Dendritic Cells but Show Redundancy in Their Requirement of TLR and Nucleotide-Binding Oligomerization Domain-Like Receptor Signaling

Ross W. B. Lindsay; Patricia A. Darrah; Kylie M. Quinn; Ulrike Wille-Reece; Lisa M. Mattei; Akiko Iwasaki; Sudhir Pai Kasturi; Bali Pulendran; Jason G. D. Gall; A. Gregory Spies; Robert A. Seder

Replication-defective adenovirus serotype 5 (rAd5) is the most potent recombinant vector for eliciting CD8 T cell responses in humans. In this study, the innate mechanisms that influence T cell responses following rAd5 immunization were assessed in mice. Using rAd5 expressing enhanced GFP (eGFP-rAd5), we show that rAd5 transfects CD11c+ dendritic cells (DCs) in draining lymph nodes in vivo following s.c. or i.m. immunization. Among distinct DC subsets, eGFP expression was highest in CD11c+CD8−B220− with a lower frequency detected in CD11c+CD8+B220− and CD11c+B220+ plasmacytoid DCs. CD11c+ DCs but not CD11c− cells from mice immunized with rAd5 encoding the SIINFEKL peptide induced proliferation of naive OT-I CD8 T cells. Furthermore, CD11c+CD8+B220− was the most potent DC subset for eliciting naive OT-I CD8 T cell proliferation. Of note, mice with pre-existing immunity to rAd5 had a substantial decrease in eGFP expression in DCs, which was associated with ~2-fold decrease in Th1 and complete inhibition of CD8 responses. Thus, pre-existing rAd5 immunity has a greater influence on CD8 compared with CD4 T cell responses. In terms of how innate cytokines and signaling pathways influenced T cell immunity following rAd5 immunization, we show that the magnitude and quality of CD8 T cell responses are partially dependent on MyD88 but independent of IL-12, type I IFN, apoptosis-associated speck-like protein, nucleotide-binding oligomerization domain-like receptor protein 3, and IL-1. Taken together, these data demonstrate a critical role for CD11c+ DCs for CD8 responses but striking redundancy for innate cytokines and signaling by TLR and nucleotide-binding oligomerization domain-like receptor pathways.


Journal of Immunology | 2013

Comparative Analysis of the Magnitude, Quality, Phenotype, and Protective Capacity of Simian Immunodeficiency Virus Gag-Specific CD8+ T Cells following Human-, Simian-, and Chimpanzee-Derived Recombinant Adenoviral Vector Immunization

Kylie M. Quinn; Andreia Costa; Ayako Yamamoto; Dana Berry; Ross W. B. Lindsay; Patricia A. Darrah; Lingshu Wang; Cheng Cheng; Wing Pui Kong; Jason G. D. Gall; Alfredo Nicosia; Antonella Folgori; Stefano Colloca; Riccardo Cortese; Emma Gostick; David A. Price; Carmen Elena Gómez; Mariano Esteban; Linda S. Wyatt; Bernard Moss; Cecilia Morgan; Mario Roederer; Robert T. Bailer; Gary J. Nabel; Richard A. Koup; Robert A. Seder

Recombinant adenoviral vectors (rAds) are the most potent recombinant vaccines for eliciting CD8+ T cell–mediated immunity in humans; however, prior exposure from natural adenoviral infection can decrease such responses. In this study we show low seroreactivity in humans against simian- (sAd11, sAd16) or chimpanzee-derived (chAd3, chAd63) compared with human-derived (rAd5, rAd28, rAd35) vectors across multiple geographic regions. We then compared the magnitude, quality, phenotype, and protective capacity of CD8+ T cell responses in mice vaccinated with rAds encoding SIV Gag. Using a dose range (1 × 107–109 particle units), we defined a hierarchy among rAd vectors based on the magnitude and protective capacity of CD8+ T cell responses, from most to least, as: rAd5 and chAd3, rAd28 and sAd11, chAd63, sAd16, and rAd35. Selection of rAd vector or dose could modulate the proportion and/or frequency of IFN-γ+TNF-α+IL-2+ and KLRG1+CD127−CD8+ T cells, but strikingly ∼30–80% of memory CD8+ T cells coexpressed CD127 and KLRG1. To further optimize CD8+ T cell responses, we assessed rAds as part of prime-boost regimens. Mice primed with rAds and boosted with NYVAC generated Gag-specific responses that approached ∼60% of total CD8+ T cells at peak. Alternatively, priming with DNA or rAd28 and boosting with rAd5 or chAd3 induced robust and equivalent CD8+ T cell responses compared with prime or boost alone. Collectively, these data provide the immunologic basis for using specific rAd vectors alone or as part of prime-boost regimens to induce CD8+ T cells for rapid effector function or robust long-term memory, respectively.


Science Translational Medicine | 2012

Elicitation of Broadly Neutralizing Influenza Antibodies in Animals with Previous Influenza Exposure

Chih-Jen Wei; Hadi M. Yassine; Patrick M. McTamney; Jason G. D. Gall; James R. R. Whittle; Jeffrey C. Boyington; Gary J. Nabel

Broadly neutralizing antibodies to influenza can be elicited by vaccination in animals previously infected or immunized by the virus. Stemming the Flu Shot Every year, the influenza virus gets a makeover so remarkable our immune systems barely recognize it. The virus mutates its surface antigens, which make it possible to evade immune attack even in people who have suffered flu in previous years. Yet, some parts of the surface antigen hemagglutinin (HA)—such as the stem region—are critical for infection and thus conserved. Consequently, scientists have targeted this region in strategies to build a universal vaccine. Unfortunately, the lack of widespread natural immunity to the stem region raises red flags about the efficacy of this method: What if previous immunity prevents the induction of broadly protective antibodies? Wei et al. now find that in mice and ferrets, neither previous infection nor previous vaccination prevents the induction of broadly neutralizing antibody responses. The authors primed mice with a DNA vaccine and then boosted with inactive influenza and found that HA stem–directed antibodies were elicited regardless of preexposure route. In ferrets, prime-boost with adenoviral vectors conferred protection against influenza challenge. Indeed, immunogenicity was actually enhanced in animals previously exposed to a divergent flu strain. Although these studies must be translated to humans, the new data suggest that administration of a successful universal flu vaccine won’t be restricted to people who have never before been exposed to the virus. The immune system responds to influenza infection by producing neutralizing antibodies to the viral surface protein, hemagglutinin (HA), which regularly changes its antigenic structure. Antibodies that target the highly conserved stem region of HA neutralize diverse influenza viruses and can be elicited through vaccination in animals and humans. Efforts to develop universal influenza vaccines have focused on strategies to elicit such antibodies; however, the concern has been raised that previous influenza immunity may abrogate the induction of such broadly protective antibodies. We show here that prime-boost immunization can induce broadly neutralizing antibody responses in influenza-immune mice and ferrets that were previously infected or vaccinated. HA stem–directed antibodies were elicited in mice primed with a DNA vaccine and boosted with inactivated vaccine from H1N1 A/New Caledonia/20/1999 (1999 NC) HA regardless of preexposure. Similarly, gene-based vaccination with replication-defective adenovirus 28 (rAd28) and 5 (rAd5) vectors encoding 1999 NC HA elicited stem-directed neutralizing antibodies and conferred protection against unmatched 1934 and 2007 H1N1 virus challenge in influenza-immune ferrets. Indeed, previous exposure to certain strains could enhance immunogenicity: The strongest HA stem–directed immune response was observed in ferrets previously infected with a divergent 1934 H1N1 virus. These findings suggest that broadly neutralizing antibodies against the conserved stem region of HA can be elicited through vaccination despite previous influenza exposure, which supports the feasibility of developing stem-directed universal influenza vaccines for humans.


Journal of Virology | 2010

Differential Specificity and Immunogenicity of Adenovirus Type 5 Neutralizing Antibodies Elicited by Natural Infection or Immunization

Cheng Cheng; Jason G. D. Gall; Martha Nason; C. Richter King; Richard A. Koup; Mario Roederer; M. Juliana McElrath; Cecilia Morgan; Gavin J. Churchyard; Lindsey R. Baden; Ann Duerr; Michael C. Keefer; Barney S. Graham; Gary J. Nabel

ABSTRACT A recent clinical trial of a T-cell-based AIDS vaccine delivered with recombinant adenovirus type 5 (rAd5) vectors showed no efficacy in lowering viral load and was associated with increased risk of human immunodeficiency virus type 1 (HIV-1) infection. Preexisting immunity to Ad5 in humans could therefore affect both immunogenicity and vaccine efficacy. We hypothesized that vaccine-induced immunity is differentially affected, depending on whether subjects were exposed to Ad5 by natural infection or by vaccination. Serum samples from vaccine trial subjects receiving a DNA/rAd5 AIDS vaccine with or without prior immunity to Ad5 were examined for the specificity of their Ad5 neutralizing antibodies and their effect on HIV-1 immune responses. Here, we report that rAd5 neutralizing antibodies were directed to different components of the virion, depending on whether they were elicited by natural infection or vaccination in HIV vaccine trial subjects. Neutralizing antibodies elicited by natural infection were directed largely to the Ad5 fiber, while exposure to rAd5 through vaccination elicited antibodies primarily to capsid proteins other than fiber. Notably, preexisting immunity to Ad5 fiber from natural infection significantly reduced the CD4 and CD8 cell responses to HIV Gag after DNA/rAd5 vaccination. The specificity of Ad5 neutralizing antibodies therefore differs depending on the route of exposure, and natural Ad5 infection compromises Ad5 vaccine-induced immunity to weak immunogens, such as HIV-1 Gag. These results have implications for future AIDS vaccine trials and the design of next-generation gene-based vaccine vectors.


Vaccine | 2010

Potent immune responses and in vitro pro-inflammatory cytokine suppression by a novel adenovirus vaccine vector based on rare human serotype 28.

Christoph Kahl; Jessica Bonnell; Suja Hiriyanna; Megan Fultz; Cassandra Nyberg-Hoffman; Ping Chen; C. Richter King; Jason G. D. Gall

Adenovirus vaccine vectors derived from rare human serotypes have been shown to be less potent than serotype 5 (Ad5) at inducing immune responses to encoded antigens. To identify highly immunogenic adenovirus vectors, we assessed pro-inflammatory cytokine expression, binding to the CD46 receptor, and immunogenicity. Species D adenoviruses uniquely suppressed pro-inflammatory cytokines and induced high levels of type I interferon. Thus, it was unexpected that a vector derived from a representative serotype, Ad28, induced significantly higher transgene-specific T cell responses than an Ad35 vector. Prime-boost regimens with Ad28, Ad35, Ad14, or Ad5 significantly boosted T cell and antibody responses. The seroprevalence of Ad28 was confirmed to be <10% in the United States. Together, this shows that a rare human serotype-based vector can elicit strong immune responses, which was not predicted by in vitro results.


Journal of Clinical Investigation | 2015

Antigen expression determines adenoviral vaccine potency independent of IFN and STING signaling

Kylie M. Quinn; Andreia Costa; Ayako Yamamoto; Kathrin Kastenmüller; Brenna J. Hill; Geoffrey M. Lynn; Patricia A. Darrah; Ross W. B. Lindsay; Lingshu Wang; Cheng Cheng; Alfredo Nicosia; Antonella Folgori; Stefano Colloca; Riccardo Cortese; Emma Gostick; David A. Price; Jason G. D. Gall; Mario Roederer; Alan Aderem; Robert A. Seder

Recombinant adenoviral vectors (rAds) are lead vaccine candidates for protection against a variety of pathogens, including Ebola, HIV, tuberculosis, and malaria, due to their ability to potently induce T cell immunity in humans. However, the ability to induce protective cellular immunity varies among rAds. Here, we assessed the mechanisms that control the potency of CD8 T cell responses in murine models following vaccination with human-, chimpanzee-, and simian-derived rAds encoding SIV-Gag antigen (Ag). After rAd vaccination, we quantified Ag expression and performed expression profiling of innate immune response genes in the draining lymph node. Human-derived rAd5 and chimpanzee-derived chAd3 were the most potent rAds and induced high and persistent Ag expression with low innate gene activation, while less potent rAds induced less Ag expression and robustly induced innate immunity genes that were primarily associated with IFN signaling. Abrogation of type I IFN or stimulator of IFN genes (STING) signaling increased Ag expression and accelerated CD8 T cell response kinetics but did not alter memory responses or protection. These findings reveal that the magnitude of rAd-induced memory CD8 T cell immune responses correlates with Ag expression but is independent of IFN and STING and provide criteria for optimizing protective CD8 T cell immunity with rAd vaccines.


Journal of Immunological Methods | 2010

A flow cytometry-based assay to assess RSV-specific neutralizing antibody is reproducible, efficient and accurate

M. Chen; J.S. Chang; M. Nason; D. Rangel; Jason G. D. Gall; B.S. Graham; J.E. Ledgerwood

Respiratory syncytial virus (RSV) is an important cause of respiratory infection in people of all ages, and is the leading cause of hospitalization in infants. Although commercially available monoclonal antibody is available for passive prophylaxis of neonates at risk of severe disease, there is no available vaccine to prevent RSV. Measurement of neutralizing activity will be a key endpoint for vaccine evaluation. Assessment of neutralizing antibody against RSV has been limited to traditional plaque reduction, which is time-consuming and inherently operator dependent and highly variable. Here, we describe a flow cytometry-based RSV-specific neutralization assay which is more rapid than traditional methods, highly sensitive and highly reproducible.

Collaboration


Dive into the Jason G. D. Gall's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cheng Cheng

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge