Jason G. Harrison
University of California, Davis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jason G. Harrison.
Chemical Research in Toxicology | 2012
Jon M. Fukuto; Samantha J. Carrington; Dean J. Tantillo; Jason G. Harrison; Louis J. Ignarro; Bruce A. Freeman; Andrew Chen; David A. Wink
Several small molecule species formally known primarily as toxic gases have, over the past 20 years, been shown to be endogenously generated signaling molecules. The biological signaling associated with the small molecules NO, CO, H₂S (and the nonendogenously generated O₂), and their derived species have become a topic of extreme interest. It has become increasingly clear that these small molecule signaling agents form an integrated signaling web that affects/regulates numerous physiological processes. The chemical interactions between these species and each other or biological targets is an important factor in their roles as signaling agents. Thus, a fundamental understanding of the chemistry of these molecules is essential to understanding their biological/physiological utility. This review focuses on this chemistry and attempts to establish the chemical basis for their signaling functions.
Journal of Physical Chemistry A | 2013
Juan José Torres; Rafael Islas; Edison Osorio; Jason G. Harrison; William Tiznado; Gabriel Merino
In this article, we employed the induced magnetic field method to show that the Al2X6 (X = F, Cl, Br, I) clusters cannot be classified as aromatic systems. Interestingly, even nucleus independent chemical shift (NICS) reveals the same conclusion when analyzed in greater detail, showing that a superficial analysis of this index can easily lead to incorrect interpretations. In view of the fact that the NICS index is extensively used by computational and theoretically oriented experimental chemists, this is an important warning against superficial analyses, as it can lead to erroneous chemical interpretation.
Chemistry: A European Journal | 2013
Maryel Contreras; Edison Osorio; Franklin Ferraro; Gustavo Puga; Kelling J. Donald; Jason G. Harrison; Gabriel Merino; William Tiznado
The most stable forms of E(5)Li(7)(+) (E = Ge, Sn, and Pb) have been explored by means of a stochastic search of their potential-energy surfaces by using the gradient embedded genetic algorithm (GEGA). The preferred isomer of the Ge(5)Li(7)(+) ion is a slightly distorted analogue of the D(5h) three-dimensional seven-pointed starlike structure adopted by the lighter C(5)Li(7)(+) and Si(5)Li(7)(+) clusters. In contrast, the preferred structures for Sn(5)Li(7)(+) and Pb(5)Li(7)(+) are quite different. By starting from the starlike arrangement, corresponding lowest-energy structures are generated by migration of one of the E atoms out of the plane with the a corresponding rearrangement of the Li atoms. To understand these structural preferences, we propose a new energy decomposition analysis based on isomerizations (isomerization energy decomposition analysis (IEDA)), which enable us to extract energetic information from isomerization between structures, mainly from highly charged fragments.
Journal of the American Chemical Society | 2016
Jason G. Harrison; Osvaldo Gutierrez; Navendu Jana; Tom G. Driver; Dean J. Tantillo
Possible mechanisms for Rh-promoted indole formation from vinyl/azidoarenes were examined computationally, and a mechanism is proposed in which the Rh catalyst promotes generation of a nitrene but is not directly involved in cyclization.
ACS Chemical Biology | 2013
Jason G. Harrison; Yvonne B. Zheng; Peter A. Beal; Dean J. Tantillo
The use of computational modeling techniques to gain insight into nucleobase interactions has been a challenging endeavor to date. Accurate treatment requires the tackling of many challenges but also holds the promise of great rewards. The development of effective computational approaches to predict the binding affinities of nucleobases and analogues can, for example, streamline the process of developing novel nucleobase modifications, which should facilitate the development of new RNAi-based therapeutics. This brief review focuses on available computational approaches to predicting base pairing affinity in RNA-based contexts such as nucleobase-nucleobase interactions in duplexes and nucleobase-protein interactions. The challenges associated with such modeling along with potential future directions for the field are highlighted.
Journal of Computer-aided Molecular Design | 2014
Valère Lounnas; Henry B. Wedler; Timothy Newman; Gijs Schaftenaar; Jason G. Harrison; Gabriella M. Nepomuceno; Ryan P. Pemberton; Dean J. Tantillo; Gert Vriend
In molecular sciences, articles tend to revolve around 2D representations of 3D molecules, and sighted scientists often resort to 3D virtual reality software to study these molecules in detail. Blind and visually impaired (BVI) molecular scientists have access to a series of audio devices that can help them read the text in articles and work with computers. Reading articles published in this journal, though, is nearly impossible for them because they need to generate mental 3D images of molecules, but the article-reading software cannot do that for them. We have previously designed AsteriX, a web server that fully automatically decomposes articles, detects 2D plots of low molecular weight molecules, removes meta data and annotations from these plots, and converts them into 3D atomic coordinates. AsteriX–BVI goes one step further and converts the 3D representation into a 3D printable, haptic-enhanced format that includes Braille annotations. These Braille-annotated physical 3D models allow BVI scientists to generate a complete mental model of the molecule. AsteriX–BVI uses Molden to convert the meta data of quantum chemistry experiments into BVI friendly formats so that the entire line of scientific information that sighted people take for granted—from published articles, via printed results of computational chemistry experiments, to 3D models—is now available to BVI scientists too. The possibilities offered by AsteriX–BVI are illustrated by a project on the isomerization of a sterol, executed by the blind co-author of this article (HBW).
Chemical Science | 2013
Osvaldo Gutierrez; Jason G. Harrison; Ryan J. Felix; Fernando Cortés Guzmán; Michel R. Gagné; Dean J. Tantillo
Quantum chemical calculations are used to explore the origins of regioselectivity for proton-, Pt(II)- and Pd(II)-promoted cyclizations of 1,5-hexadienes, 5-aminoalkenes, and allylic acetimidates. The strain associated with achieving carbonium ion-like transition state geometries is shown to be a key factor in controlling 5-exo vs. 6-endo selectivity.
Journal of Mass Spectrometry | 2012
Sébastien Laulhé; Bogdan Bogdanov; Leah M. Johannes; Osvaldo Gutierrez; Jason G. Harrison; Dean J. Tantillo; Xiang Zhang; Michael H. Nantz
The McLafferty rearrangement is an extensively studied fragmentation reaction for the odd-electron positive ions from a diverse range of functional groups and molecules. Here, we present experimental and theoretical results of 12 model compounds that were synthesized and investigated by GC-TOF MS and density functional theory calculations. These compounds consisted of three main groups: carbonyls, oximes and silyl oxime ethers. In all electron ionization mass spectra, the fragment ions that could be attributed to the occurrence of a McLafferty rearrangement were observed. For t-butyldimethylsilyl oxime ethers with oxygen in a β-position, the McLafferty rearrangement was accompanied by loss of the t-butyl radical. The various mass spectra showed that the McLafferty rearrangement is relatively enhanced compared with other primary fragmentation reactions by the following factors: oxime versus carbonyl, oxygen versus methylene at the β-position and ketone versus aldehyde. Calculations predict that the stepwise mechanism is favored over the concerted mechanism for all but one compound. For carbonyl compounds, C-C bond breaking was the rate-determining step. However, for both the oximes and t-butyldimethylsilyl oxime ethers with oxygen at the β-position, the hydrogen transfer step was rate limiting, whereas with a CH(2) group at the β-position, the C-C bond breaking was again rate determining. n-Propoxy-acetaldehyde, bearing an oxygen atom at the β-position, is the only case that was predicted to proceed through a concerted mechanism. The synthesized oximes exist as both the (E)- and (Z)-isomers, and these were separable by GC. In the mass spectra of the two isomers, fragment ions that were generated by the McLafferty rearrangement were observed. Finally, fragment ions corresponding to the McLafferty reverse charge rearrangement were observed for all compounds at varying relative ion intensities compared with the conventional McLafferty rearrangement.
Chemistry: A European Journal | 2012
Osvaldo Gutierrez; Jason G. Harrison; Ryan P. Pemberton; Dean J. Tantillo
DFT (both B3LYP and M06-2X), CASSCF, and CASPT2 calculations were used to investigate competing [3, 3] and [3, 5] sigmatropic shifts and intramolecular [4+2] cycloaddition of 1,3,7-octatriene. In accord with previous results on 1,5-hexadiene, CASSCF calculations found both stepwise and concerted pathways for the [3, 3] rearrangement. For the competing [3, 5] sigmatropic rearrangement, CASSCF and CASPT2 calculations revealed three stepwise pathways with similar barriers. UB3LYP and UM06-2X calculations predicted a different potential energy landscape: no stepwise [3, 3] pathway, only two competing [3, 5] sigmatropic shifts, and an intramolecular Diels-Alder cycloaddition/homolytic ring-opening pathway. Significant lowering of barriers for all rearrangements was predicted for some 1,3,7-octatrienes with substituents at the 4- and 7-positions.
Journal of Molecular Modeling | 2013
Jason G. Harrison; Dean J. Tantillo
AbstractQuantum chemical computations (B3LYP/LACVP**) were applied to assess the impact of Au(I) complexation on activation barriers for sequential electrocyclization reactions (one a 1,2-dihydroazete ring-opening and another a pentadienyl cation ring-closure) proposed to occur during a complex reaction cascade that converts alkynes and imines to cyclopentenimines. FigureGold in a complex cascade reaction