Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason Gorman is active.

Publication


Featured researches published by Jason Gorman.


Nature | 2011

Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9

Jason S. McLellan; Marie Pancera; Chris Carrico; Jason Gorman; Jean-Philippe Julien; Reza Khayat; Robert K. Louder; Robert Pejchal; Mallika Sastry; Kaifan Dai; Sijy O’Dell; Nikita Patel; Syed Shahzad-ul-Hussan; Yongping Yang; Baoshan Zhang; Tongqing Zhou; Jiang Zhu; Jeffrey C. Boyington; Gwo-Yu Chuang; Devan Diwanji; Ivelin S. Georgiev; Young Do Kwon; Doyung Lee; Mark K. Louder; Stephanie Moquin; Stephen D. Schmidt; Zhi-Yong Yang; Mattia Bonsignori; John A. Crump; Saidi Kapiga

Variable regions 1 and 2 (V1/V2) of human immunodeficiency virus-1 (HIV-1) gp120 envelope glycoprotein are critical for viral evasion of antibody neutralization, and are themselves protected by extraordinary sequence diversity and N-linked glycosylation. Human antibodies such as PG9 nonetheless engage V1/V2 and neutralize 80% of HIV-1 isolates. Here we report the structure of V1/V2 in complex with PG9. V1/V2 forms a four-stranded β-sheet domain, in which sequence diversity and glycosylation are largely segregated to strand-connecting loops. PG9 recognition involves electrostatic, sequence-independent and glycan interactions: the latter account for over half the interactive surface but are of sufficiently weak affinity to avoid autoreactivity. The structures of V1/V2-directed antibodies CH04 and PGT145 indicate that they share a common mode of glycan penetration by extended anionic loops. In addition to structurally defining V1/V2, the results thus identify a paradigm of antibody recognition for highly glycosylated antigens, which—with PG9—involves a site of vulnerability comprising just two glycans and a strand.


Nature | 2014

Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies

Nicole A. Doria-Rose; Chaim A. Schramm; Jason Gorman; Penny L. Moore; Jinal N. Bhiman; Brandon J. DeKosky; Michael J. Ernandes; Ivelin S. Georgiev; Helen J. Kim; Marie Pancera; Ryan P. Staupe; Han R. Altae-Tran; Robert T. Bailer; Ema T. Crooks; Albert Cupo; Aliaksandr Druz; Nigel Garrett; Kam Hon Hoi; Rui Kong; Mark K. Louder; Nancy S. Longo; Krisha McKee; Molati Nonyane; Sijy O’Dell; Ryan S. Roark; Rebecca S. Rudicell; Stephen D. Schmidt; Daniel J. Sheward; Cinque Soto; Constantinos Kurt Wibmer

Antibodies capable of neutralizing HIV-1 often target variable regions 1 and 2 (V1V2) of the HIV-1 envelope, but the mechanism of their elicitation has been unclear. Here we define the developmental pathway by which such antibodies are generated and acquire the requisite molecular characteristics for neutralization. Twelve somatically related neutralizing antibodies (CAP256-VRC26.01–12) were isolated from donor CAP256 (from the Centre for the AIDS Programme of Research in South Africa (CAPRISA)); each antibody contained the protruding tyrosine-sulphated, anionic antigen-binding loop (complementarity-determining region (CDR) H3) characteristic of this category of antibodies. Their unmutated ancestor emerged between weeks 30–38 post-infection with a 35-residue CDR H3, and neutralized the virus that superinfected this individual 15 weeks after initial infection. Improved neutralization breadth and potency occurred by week 59 with modest affinity maturation, and was preceded by extensive diversification of the virus population. HIV-1 V1V2-directed neutralizing antibodies can thus develop relatively rapidly through initial selection of B cells with a long CDR H3, and limited subsequent somatic hypermutation. These data provide important insights relevant to HIV-1 vaccine development.


Nature Structural & Molecular Biology | 2008

Visualizing one-dimensional diffusion of proteins along DNA

Jason Gorman; Eric C. Greene

The ability of proteins to locate specific target sequences or structures among a vast excess of nonspecific DNA is a fundamental property that affects virtually all aspects of biology. Despite this importance, experimental methods have lagged behind the establishment of theoretical principles describing potential target location mechanisms. However, recent advances in single-molecule detection now allow direct visual observation of proteins diffusing along DNA. Here we present an overview of these new observations and discuss the advantages, limitations and future prospects for imaging the motion of proteins along DNA.


Science | 2014

Conformational dynamics of single HIV-1 envelope trimers on the surface of native virions

James B. Munro; Jason Gorman; Xiaochu Ma; Zhou Zhou; James Arthos; Dennis R. Burton; Wayne C. Koff; Joel R. Courter; Amos B. Smith; Peter D. Kwong; Scott C. Blanchard; Walther Mothes

HIVs shape-shifting envelope protein HIVs envelope protein (Env) coats virus particles and allows HIV to enter host cells. HIV entry is highly dynamic. Env proteins work in groups of three (called trimers), which bind to the viral receptor and co-receptor, both expressed by host cells. Viral receptor binding causes a structural rearrangement in the trimer that allows for co-receptor binding and finally, viral entry. To visualize dynamic changes in Env conformation during viral entry, Munro et al. added differently colored fluorescent tags to two different regions of individual HIV trimers. Single-molecule fluorescence resonance entry transfer revealed three distinct Env conformations before cell entry. Occupation of particular conformations depended on host receptor binding. Science, this issue p. 759 Single-molecule fluorescence studies reveal how HIV’s viral spike protein varies its conformation as it binds to receptors. The HIV-1 envelope (Env) mediates viral entry into host cells. To enable the direct imaging of conformational dynamics within Env, we introduced fluorophores into variable regions of the glycoprotein gp120 subunit and measured single-molecule fluorescence resonance energy transfer within the context of native trimers on the surface of HIV-1 virions. Our observations revealed unliganded HIV-1 Env to be intrinsically dynamic, transitioning between three distinct prefusion conformations, whose relative occupancies were remodeled by receptor CD4 and antibody binding. The distinct properties of neutralization-sensitive and neutralization-resistant HIV-1 isolates support a dynamics-based mechanism of immune evasion and ligand recognition.


Nature Structural & Molecular Biology | 2015

Crystal structure, conformational fixation and entry-related interactions of mature ligand-free HIV-1 Env

Young Do Kwon; Marie Pancera; Priyamvada Acharya; Ivelin S. Georgiev; Emma T. Crooks; Jason Gorman; M. Gordon Joyce; Xiaochu Ma; Sandeep Narpala; Cinque Soto; Daniel S. Terry; Yongping Yang; Tongqing Zhou; Goran Ahlsen; Robert T. Bailer; Michael Chambers; Gwo Yu Chuang; Nicole A. Doria-Rose; Aliaksandr Druz; Mark A. Hallen; Adam Harned; Tatsiana Kirys; Mark K. Louder; Sijy O'Dell; Gilad Ofek; Keiko Osawa; Madhu Prabhakaran; Mallika Sastry; Guillaume Stewart-Jones; Jonathan Stuckey

As the sole viral antigen on the HIV-1–virion surface, trimeric Env is a focus of vaccine efforts. Here we present the structure of the ligand-free HIV-1–Env trimer, fix its conformation and determine its receptor interactions. Epitope analyses revealed trimeric ligand-free Env to be structurally compatible with broadly neutralizing antibodies but not poorly neutralizing ones. We coupled these compatibility considerations with binding antigenicity to engineer conformationally fixed Envs, including a 201C 433C (DS) variant specifically recognized by broadly neutralizing antibodies. DS-Env retained nanomolar affinity for the CD4 receptor, with which it formed an asymmetric intermediate: a closed trimer bound by a single CD4 without the typical antigenic hallmarks of CD4 induction. Antigenicity-guided structural design can thus be used both to delineate mechanism and to fix conformation, with DS-Env trimers in virus-like-particle and soluble formats providing a new generation of vaccine antigens.


Nature Structural & Molecular Biology | 2010

Visualizing one-dimensional diffusion of eukaryotic DNA repair factors along a chromatin lattice

Jason Gorman; Aaron J. Plys; Mari-Liis Visnapuu; Eric Alani; Eric C. Greene

DNA-binding proteins survey genomes for targets using facilitated diffusion, which typically includes a one-dimensional (1D) scanning component for sampling local regions. Eukaryotic proteins must accomplish this task while navigating through chromatin. Yet it is unknown whether nucleosomes disrupt 1D scanning or eukaryotic DNA-binding factors can circumnavigate nucleosomes without falling off DNA. Here we use single-molecule microscopy in conjunction with nanofabricated curtains of DNA to show that the postreplicative mismatch repair protein complex Mlh1–Pms1 diffuses in 1D along DNA via a hopping/stepping mechanism and readily bypasses nucleosomes. This is the first experimental demonstration that a passively diffusing protein can traverse stationary obstacles. In contrast, Msh2–Msh6, a mismatch repair protein complex that slides while maintaining continuous contact with DNA, experiences a boundary upon encountering nucleosomes. These differences reveal important mechanistic constraints affecting intranuclear trafficking of DNA-binding proteins.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Single-molecule imaging reveals target-search mechanisms during DNA mismatch repair

Jason Gorman; Feng Wang; Sy Redding; Aaron J. Plys; Teresa Fazio; Shalom J. Wind; Eric Alani; Eric C. Greene

The ability of proteins to locate specific targets among a vast excess of nonspecific DNA is a fundamental theme in biology. Basic principles governing these search mechanisms remain poorly understood, and no study has provided direct visualization of single proteins searching for and engaging target sites. Here we use the postreplicative mismatch repair proteins MutSα and MutLα as model systems for understanding diffusion-based target searches. Using single-molecule microscopy, we directly visualize MutSα as it searches for DNA lesions, MutLα as it searches for lesion-bound MutSα, and the MutSα/MutLα complex as it scans the flanking DNA. We also show that MutLα undergoes intersite transfer between juxtaposed DNA segments while searching for lesion-bound MutSα, but this activity is suppressed upon association with MutSα, ensuring that MutS/MutL remains associated with the damage-bearing strand while scanning the flanking DNA. Our findings highlight a hierarchy of lesion- and ATP-dependent transitions involving both MutSα and MutLα, and help establish how different modes of diffusion can be used during recognition and repair of damaged DNA.


Science | 2016

Fusion peptide of HIV-1 as a site of vulnerability to neutralizing antibody

Rui Kong; Ke Xu; Tongqing Zhou; Priyamvada Acharya; Thomas Lemmin; Liu K; Gabriel Ozorowski; Cinque Soto; Justin D. Taft; Robert T. Bailer; Evan M. Cale; Lei Chen; Choi Cw; Gwo-Yu Chuang; Nicole A. Doria-Rose; Aliaksandr Druz; Ivelin S. Georgiev; Jason Gorman; Jian-Dong Huang; Michael Gordon Joyce; Mark K. Louder; Xiaochu Ma; Krisha McKee; Sijy O'Dell; Marie Pancera; Yili Yang; Scott C. Blanchard; Walther Mothes; Dennis R. Burton; Wayne C. Koff

An antibody to block viral fusion A small fraction of HIV-1–infected individuals develop broad and potent antibodies that bind the HIV-1 envelope protein (Env). These antibodies recognize a limited set of conserved epitopes on Env, such as Envs host receptor-binding site. Kong et al. now report a neutralizing antibody isolated from an HIV-1–infected individual that binds to the fusion peptide of Env. This is unexpected because viruses often try to mask such key components of their cell entry machinery from antibody attack. Crystal structures of the antibody bound to the fusion peptide and to Env itself define the epitope, provide insight into the specific mechanism of antibody binding, and may inform HIV-1 vaccine design. Science, this issue p. 828 A neutralizing antibody against HIV-1 unexpectedly targets a key component of the virus’ cell entry machinery. The HIV-1 fusion peptide, comprising 15 to 20 hydrophobic residues at the N terminus of the Env-gp41 subunit, is a critical component of the virus-cell entry machinery. Here, we report the identification of a neutralizing antibody, N123-VRC34.01, which targets the fusion peptide and blocks viral entry by inhibiting conformational changes in gp120 and gp41 subunits of Env required for entry. Crystal structures of N123-VRC34.01 liganded to the fusion peptide, and to the full Env trimer, revealed an epitope consisting of the N-terminal eight residues of the gp41 fusion peptide and glycan N88 of gp120, and molecular dynamics showed that the N-terminal portion of the fusion peptide can be solvent-exposed. These results reveal the fusion peptide to be a neutralizing antibody epitope and thus a target for vaccine design.


Journal of Virology | 2016

New Member of the V1V2-Directed CAP256-VRC26 Lineage That Shows Increased Breadth and Exceptional Potency.

Nicole A. Doria-Rose; Jinal N. Bhiman; Ryan S. Roark; Chaim A. Schramm; Jason Gorman; Gwo-Yu Chuang; Marie Pancera; Evan M. Cale; Michael J. Ernandes; Mark K. Louder; Mangaiarkarasi Asokan; Robert T. Bailer; Aliaksandr Druz; Isabella R. Fraschilla; Nigel Garrett; Marissa Jarosinski; Rebecca M. Lynch; Krisha McKee; Sijy O'Dell; Amarendra Pegu; Stephen D. Schmidt; Ryan P. Staupe; Matthew S. Sutton; Constantinos Kurt Wibmer; Barton F. Haynes; Salim Abdool-Karim; Lawrence Shapiro; Peter D. Kwong; Penny L. Moore; Lynn Morris

ABSTRACT The epitopes defined by HIV-1 broadly neutralizing antibodies (bNAbs) are valuable templates for vaccine design, and studies of the immunological development of these antibodies are providing insights for vaccination strategies. In addition, the most potent and broadly reactive of these bNAbs have potential for clinical use. We previously described a family of 12 V1V2-directed neutralizing antibodies, CAP256-VRC26, isolated from an HIV-1 clade C-infected donor at years 1, 2, and 4 of infection (N. A. Doria-Rose et al., Nature 509:55–62, 2014, http://dx.doi.org/10.1038/nature13036). Here, we report on the isolation and characterization of new members of the family mostly obtained at time points of peak serum neutralization breadth and potency. Thirteen antibodies were isolated from B cell culture, and eight were isolated using trimeric envelope probes for differential single B cell sorting. One of the new antibodies displayed a 10-fold greater neutralization potency than previously published lineage members. This antibody, CAP256-VRC26.25, neutralized 57% of diverse clade viral isolates and 70% of clade C isolates with remarkable potency. Among the viruses neutralized, the median 50% inhibitory concentration was 0.001 μg/ml. All 33 lineage members targeted a quaternary epitope focused on V2. While all known bNAbs targeting the V1V2 region interact with the N160 glycan, the CAP256-VRC26 antibodies showed an inverse correlation of neutralization potency with dependence on this glycan. Overall, our results highlight the ongoing evolution within a single antibody lineage and describe more potent and broadly neutralizing members with potential clinical utility, particularly in areas where clade C is prevalent. IMPORTANCE Studies of HIV-1 broadly neutralizing antibodies (bNAbs) provide valuable information for vaccine design, and the most potent and broadly reactive of these bNAbs have potential for clinical use. We previously described a family of V1V2-directed neutralizing antibodies from an HIV-1 clade C-infected donor. Here, we report on the isolation and characterization of new members of the family mostly obtained at time points of peak serum neutralization breadth and potency. One of the new antibodies, CAP256-VRC26.25, displayed a 10-fold greater neutralization potency than previously described lineage members. It neutralized 57% of diverse clade viral isolates and 70% of clade C isolates with remarkable potency: the median 50% inhibitory concentration was 0.001 μg/ml. Our results highlight the ongoing evolution within a single antibody lineage and describe more potent and broadly neutralizing members with potential clinical utility, particularly in areas where clade C is prevalent.


Nature Structural & Molecular Biology | 2013

The promoter-search mechanism of Escherichia coli RNA polymerase is dominated by three-dimensional diffusion.

Feng Wang; Sy Redding; Ilya J. Finkelstein; Jason Gorman; David R. Reichman; Eric C. Greene

Gene expression, DNA replication and genome maintenance are all initiated by proteins that must recognize specific targets from among a vast excess of nonspecific DNA. For example, to initiate transcription, Escherichia coli RNA polymerase (RNAP) must locate promoter sequences, which compose <2% of the bacterial genome. This search problem remains one of the least understood aspects of gene expression, largely owing to the transient nature of search intermediates. Here we visualize RNAP in real time as it searches for promoters, and we develop a theoretical framework for analyzing target searches at the submicroscopic scale on the basis of single-molecule target-association rates. We demonstrate that, contrary to long-held assumptions, the promoter search is dominated by three-dimensional diffusion at both the microscopic and submicroscopic scales in vitro, which has direct implications for understanding how promoters are located within physiological settings.

Collaboration


Dive into the Jason Gorman's collaboration.

Top Co-Authors

Avatar

Peter D. Kwong

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Marie Pancera

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Aliaksandr Druz

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

John R. Mascola

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Tongqing Zhou

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ivelin S. Georgiev

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yongping Yang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Nicole A. Doria-Rose

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Gwo-Yu Chuang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge