Jason H. Pomerantz
University of California, San Francisco
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jason H. Pomerantz.
Cell Stem Cell | 2010
Kostandin V. Pajcini; Stéphane Y. Corbel; Julien Sage; Jason H. Pomerantz; Helen M. Blau
An outstanding biological question is why tissue regeneration in mammals is limited, whereas urodele amphibians and teleost fish regenerate major structures, largely by cell cycle reentry. Upon inactivation of Rb, proliferation of postmitotic urodele skeletal muscle is induced, whereas in mammalian muscle this mechanism does not exist. We postulated that a tumor suppressor present in mammals but absent in regenerative vertebrates, the Ink4a product ARF (alternative reading frame), is a regeneration suppressor. Concomitant inactivation of Arf and Rb led to mammalian muscle cell cycle reentry, loss of differentiation properties, and upregulation of cytokinetic machinery. Single postmitotic myocytes were isolated by laser micro-dissection-catapulting, and transient suppression of Arf and Rb yielded myoblast colonies that retained the ability to differentiate and fuse into myofibers upon transplantation in vivo. These results show that differentiation of mammalian cells is reversed by inactivation of Arf and Rb and support the hypothesis that Arf evolved at the expense of regeneration.
Nature Cell Biology | 2004
Jason H. Pomerantz; Helen M. Blau
The goal of regenerative medicine is to restore form and function to damaged tissues. One potential therapeutic approach involves the use of autologous cells derived from the bone marrow (bone marrow-derived cells, BMDCs). Advances in nuclear transplantation, experimental heterokaryon formation and the observed plasticity of gene expression and phenotype reported in multiple phyla provide evidence for nuclear plasticity. Recent observations have extended these findings to show that endogenous cells within the bone marrow have the capacity to incorporate into defective tissues and be reprogrammed. Irrespective of the mechanism, the potential for new gene expression patterns by BMDCs in recipient tissues holds promise for developing cellular therapies for both proliferative and post-mitotic tissues.
Journal of Biological Chemistry | 2007
Derrick C. Wan; Jason H. Pomerantz; Lisa J. Brunet; Jae-Beom Kim; Yu-Fen Chou; Benjamin M. Wu; Richard M. Harland; Helen M. Blau; Michael T. Longaker
Several investigations have demonstrated a precise balance to exist between bone morphogenetic protein (BMP) agonists and antagonists, dictating BMP signaling and osteogenesis. We report a novel approach to manipulate BMP activity through a down-regulation of the potent BMP antagonist Noggin, and examined the effects on the bone forming capacity of osteoblasts. Reduction of noggin enhanced BMP signaling and in vitro osteoblast bone formation, as demonstrated by both gene expression profiles and histological staining. The effects of noggin suppression on in vivo bone formation were also investigated using critical-sized calvarial defects in mice repaired with noggin-suppressed osteoblasts. Radiographic and histological analyses revealed significantly more bone regeneration at 2 and 4 weeks post-injury. These findings strongly support the concept of enhanced osteogenesis through a down-regulation in Noggin and suggest a novel approach to clinically accelerate bone formation, potentially allowing for earlier mobilization of patients following skeletal injury or surgical resection.
Journal of Cell Biology | 2008
Kostandin V. Pajcini; Jason H. Pomerantz; Ozan Alkan; Regis Doyonnas; Helen M. Blau
Cell–cell fusion is critical to the normal development of certain tissues, yet the nature and degree of conservation of the underlying molecular components remains largely unknown. Here we show that the two guanine-nucleotide exchange factors Brag2 and Dock180 have evolutionarily conserved functions in the fusion of mammalian myoblasts. Their effects on muscle cell formation are distinct and are a result of the activation of the GTPases ARF6 and Rac, respectively. Inhibition of ARF6 activity results in a lack of physical association between paxillin and β1-integrin, and disruption of paxillin transport to sites of focal adhesion. We show that fusion machinery is conserved among distinct cell types because Dock180 deficiency prevented fusion of macrophages and the formation of multinucleated giant cells. Our results are the first to demonstrate a role for a single protein in the fusion of two different cell types, and provide novel mechanistic insight into the function of GEFs in the morphological maturation of multinucleated cells.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Tom Wehrman; W. J. Raab; C. L. Casipit; Regis Doyonnas; Jason H. Pomerantz; Helen M. Blau
The orphan receptor tyrosine kinase ErbB2 is activated by each of the EGFR family members upon ligand binding. However, difficulties monitoring the dynamic interactions of the membrane receptors have hindered the elucidation of the mechanism of ErbB2 activation. We have engineered a system to monitor protein–protein interactions in intact mammalian cells such that different sets of protein interactions can be quantitatively compared. Application of this system to the interactions of the EGFR family showed that ErbB2 interacts stably with the EGFR and ErbB3, but fails to spontaneously homooligomerize. The widely used anti-cancer antibody Herceptin was found to effectively inhibit the interaction of the EGFR and ErbB2 but not to interfere with the interaction of ErbB2–ErbB3. Treatment of cells expressing EGFR and ErbB2 with Herceptin results in increased EGFR homooligomerization in the presence of EGF and a subsequent rapid internalization and down-regulation of the EGFR. In summary, the protein interaction system described here enabled the characterization of ErbB2 interactions within the biological context of the plasma membrane and provides insight into the mechanism of Herceptin action on cells overexpressing ErbB2.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Fan Zhang; Jason H. Pomerantz; George L. Sen; Adam T. Palermo; Helen M. Blau
DNA methylation is among the most stable epigenetic marks, ensuring tissue-specific gene expression in a heritable manner throughout development. Here we report that differentiated mesodermal somatic cells can confer tissue-specific changes in DNA methylation on epidermal progenitor cells after fusion in stable multinucleate heterokaryons. Myogenic factors alter regulatory regions of genes in keratinocyte cell nuclei, demethylating and activating a muscle-specific gene and methylating and silencing a keratinocyte-specific gene. Because these changes occur in the absence of DNA replication or cell division, they are mediated by an active mechanism. Thus, the capacity to transfer epigenetic changes to other nuclei is not limited to embryonic stem cells and oocytes but is also a property of highly specialized mammalian somatic cells. These results suggest the possibility of directing the reprogramming of readily available postnatal human progenitor cells toward specific tissue cell types.
The FASEB Journal | 2009
Adam T. Palermo; Regis Doyonnas; Nidhi Bhutani; Jason H. Pomerantz; Ozan Alkan; Helen M. Blau
An understanding of nuclear reprogramming is fundamental to the use of cells in regenerative medicine. Due to technological obstacles, the time course and extent of reprogramming of cells following fusion has not been assessed to date. Here, we show that hundreds of genes are activated or repressed within hours of fusion of human keratinocytes and mouse muscle cells in heterokaryons, and extensive changes are observed within 4 days. This study was made possible by the development of a broadly applicable approach, species‐specific transcriptome amplification (SSTA), which enables global resolution of transcripts derived from the nuclei of two species, even when the proportions of species‐specific transcripts are highly skewed. Remarkably, either phenotype can be dominant; an excess of primary keratinocytes leads to activation of the keratinocyte program in muscle cells and the converse is true when muscle cells are in excess. We conclude that nuclear reprogramming in heterokaryons is rapid, extensive, bidirectional, and dictated by the balance of regulators contributed by the cell types.— Adam Palermo, Regis Doyonnas, Nidhi Bhutani, Jason Pomerantz, Ozan Alkan, Helen M. Blau. Nuclear reprogramming in heterokaryons is rapid, extensive, and bidirectional. FASEB J. 23, 1431–1440 (2009)
Stem cell reports | 2015
Xiaoti Xu; Karlijn J. Wilschut; Gayle Kouklis; Hua Tian; Robert Hesse; Catharine B. Garland; Hani Sbitany; Scott L. Hansen; Rahul Seth; P. Daniel Knott; William Y. Hoffman; Jason H. Pomerantz
Summary Identification of human satellite cells that fulfill muscle stem cell criteria is an unmet need in regenerative medicine. This hurdle limits understanding how closely muscle stem cell properties are conserved among mice and humans and hampers translational efforts in muscle regeneration. Here, we report that PAX7 satellite cells exist at a consistent frequency of 2–4 cells/mm of fiber in muscles of the human trunk, limbs, and head. Xenotransplantation into mice of 50–70 fiber-associated, or 1,000–5,000 FACS-enriched CD56+/CD29+ human satellite cells led to stable engraftment and formation of human-derived myofibers. Human cells with characteristic PAX7, CD56, and CD29 expression patterns populated the satellite cell niche beneath the basal lamina on the periphery of regenerated fibers. After additional injury, transplanted satellite cells robustly regenerated to form hundreds of human-derived fibers. Together, these findings conclusively delineate a source of bona-fide endogenous human muscle stem cells that will aid development of clinical applications.
Development | 2013
Jason H. Pomerantz; Helen M. Blau
Tumor suppressors are so named because cancers occur in their absence, but these genes also have important functions in development, metabolism and tissue homeostasis. Here, we discuss known and potential functions of tumor suppressor genes during tissue regeneration, focusing on the evolutionarily conserved tumor suppressors pRb1, p53, Pten and Hippo. We propose that their activity is essential for tissue regeneration. This is in contrast to suggestions that tumor suppression is a trade-off for regenerative capacity. We also hypothesize that certain aspects of tumor suppressor pathways inhibit regenerative processes in mammals, and that transient targeted modification of these pathways could be fruitfully exploited to enhance processes that are important to regenerative medicine.
Aesthetic Surgery Journal | 2008
Ronald P. Gruber; Jennifer Weintraub; Jason H. Pomerantz
The authors use 5 basic suture techniques in tip plasty: transdomal, interdomal, lateral crural mattress, columella-septal, and intercrural, incorporating these techniques into a simple algorithm to control tip cartilage shape. They then introduce the universal horizontal mattress suture, designed to control all undesirable nasal cartilage convexities/concavities, and provide a new suturing technique that can be applied in all patients in whom a change of cartilage shape, including tip cartilages, is desired. They also apply these suture techniques in patients undergoing closed and secondary rhinoplasty.