Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason J. Moghaddas is active.

Publication


Featured researches published by Jason J. Moghaddas.


Ecological Applications | 2009

Fire treatment effects on vegetation structure, fuels, and potential fire severity in western U.S. forests

Scott L. Stephens; Jason J. Moghaddas; Carl Edminster; Carl E. Fiedler; Sally M. Haase; Michael Harrington; Jon E. Keeley; Eric E. Knapp; James D. McIver; Kerry L. Metlen; Carl N. Skinner; Andrew Youngblood

Forest structure and species composition in many western U.S. coniferous forests have been altered through fire exclusion, past and ongoing harvesting practices, and livestock grazing over the 20th century. The effects of these activities have been most pronounced in seasonally dry, low and mid-elevation coniferous forests that once experienced frequent, low to moderate intensity, fire regimes. In this paper, we report the effects of Fire and Fire Surrogate (FFS) forest stand treatments on fuel load profiles, potential fire behavior, and fire severity under three weather scenarios from six western U.S. FFS sites. This replicated, multisite experiment provides a framework for drawing broad generalizations about the effectiveness of prescribed fire and mechanical treatments on surface fuel loads, forest structure, and potential fire severity. Mechanical treatments without fire resulted in combined 1-, 10-, and 100-hour surface fuel loads that were significantly greater than controls at three of five FFS sites. Canopy cover was significantly lower than controls at three of five FFS sites with mechanical-only treatments and at all five FFS sites with the mechanical plus burning treatment; fire-only treatments reduced canopy cover at only one site. For the combined treatment of mechanical plus fire, all five FFS sites with this treatment had a substantially lower likelihood of passive crown fire as indicated by the very high torching indices. FFS sites that experienced significant increases in 1-, 10-, and 100-hour combined surface fuel loads utilized harvest systems that left all activity fuels within experimental units. When mechanical treatments were followed by prescribed burning or pile burning, they were the most effective treatment for reducing crown fire potential and predicted tree mortality because of low surface fuel loads and increased vertical and horizontal canopy separation. Results indicate that mechanical plus fire, fire-only, and mechanical-only treatments using whole-tree harvest systems were all effective at reducing potential fire severity under severe fire weather conditions. Retaining the largest trees within stands also increased fire resistance.


Ecological Applications | 2009

The national Fire and Fire Surrogate study: effects of fuel reduction methods on forest vegetation structure and fuels

Dylan W. Schwilk; Jon E. Keeley; Eric E. Knapp; James D. McIver; John D. Bailey; Christopher J. Fettig; Carl E. Fiedler; Richy J. Harrod; Jason J. Moghaddas; Kenneth W. Outcalt; Carl N. Skinner; Scott L. Stephens; Thomas A. Waldrop; Daniel A. Yaussy; Andrew Youngblood

Changes in vegetation and fuels were evaluated from measurements taken before and after fuel reduction treatments (prescribed fire, mechanical treatments, and the combination of the two) at 12 Fire and Fire Surrogate (FFS) sites located in forests with a surface fire regime across the conterminous United States. To test the relative effectiveness of fuel reduction treatments and their effect on ecological parameters we used an information-theoretic approach on a suite of 12 variables representing the overstory (basal area and live tree, sapling, and snag density), the understory (seedling density, shrub cover, and native and alien herbaceous species richness), and the most relevant fuel parameters for wildfire damage (height to live crown, total fuel bed mass, forest floor mass, and woody fuel mass). In the short term (one year after treatment), mechanical treatments were more effective at reducing overstory tree density and basal area and at increasing quadratic mean tree diameter. Prescribed fire treatments were more effective at creating snags, killing seedlings, elevating height to live crown, and reducing surface woody fuels. Overall, the response to fuel reduction treatments of the ecological variables presented in this paper was generally maximized by the combined mechanical plus burning treatment. If the management goal is to quickly produce stands with fewer and larger diameter trees, less surface fuel mass, and greater herbaceous species richness, the combined treatment gave the most desirable results. However, because mechanical plus burning treatments also favored alien species invasion at some sites, monitoring and control need to be part of the prescription when using this treatment.


Canadian Journal of Forest Research | 2009

Fuel treatment effects on stand-level carbon pools, treatment-related emissions, and fire risk in a Sierra Nevada mixed-conifer forest

Scott L. Stephens; Jason J. Moghaddas; Bruce R. Hartsough; Emily E.Y. Moghaddas; Nicholas Clinton

Policies have been enacted to encourage carbon (C) sequestration through afforestation, reforestation, and other silvicultural practices; however, the effects of wildfires on forest C stocks are poorly understood. We present information from Sierran mixed-conifer forests regarding how control, mechanical, prescribed-fire, and mechanical followed by prescribed-fire treatments affected C pools. Secondly, we report CO2 emissions from machinery and burning associated with the treatments. Lastly, the effects of treatments on the potential for C loss to wildfire are presented. The amount of above- ground C in live trees was significantly reduced in mechanical-only and mechanical plus fire treatments; C contained in dead trees was not significantly different. There was no significant difference in aboveground live and dead tree C between the fire-only and control treatments. Fire-only and mechanical plus fire treatments emitted significantly more CO2 than the mechanical treatment and control. Modeling results for the control demonstrated 90% of the live tree C had a high (>75%) chance of being killed in a wildfire; in contrast, all three active treatments had low vulnerabilities to C loss. With wildfire severity increasing in most Sierran forests, management actions designed to increase fire resistance are justified for long- term C sequestration.


International Journal of Wildland Fire | 2007

A fuel treatment reduces fire severity and increases suppression efficiency in a mixed conifer forest

Jason J. Moghaddas; Larry Craggs

Fuel treatments are being implemented on public and private lands across the western United States. Although scientists and managers have an understanding of how fuel treatments can modify potential fire behaviour under modelled conditions, there is limited information on how treatments perform under real wildfire conditions in Sierran mixed conifer forests. The Bell Fire started on 22 September 2005 on the Plumas National Forest, CA. This fire burned upslope into a 1-year old, 158-ha mechanical fuel treatment on private land. Prior to coming into contact with the fuel treatment, the main fire ignited spot fires 400 feet (122 metres) into the treated area. Overall, this fuel treatment resulted in: (1) increased penetration of retardant to surface fuels; (2) improved visual contact between fire crews and the Incident Commander; (3) safe access to the main fire; and (4) quick suppression of spot fires. This treatment was relatively small and isolated from other fuel treatments but resulted in decreased severity, suppression costs and post-fire rehabilitation needs, leading to cost savings for local public and private land managers.


International Journal of Wildland Fire | 2013

Ecological effects of alternative fuel-reduction treatments: Highlights of the National Fire and Fire Surrogate study (FFS)

James D. McIver; Scott L. Stephens; James K. Agee; Jamie Barbour; Ralph E. J. Boerner; Carleton B. Edminster; Karen Erickson; Kerry L. Farris; Christopher J. Fettig; Carl E. Fiedler; Sally M. Haase; Stephen C. Hart; Jon E. Keeley; Eric E. Knapp; John F. Lehmkuhl; Jason J. Moghaddas; William J. Otrosina; Kenneth W. Outcalt; Dylan W. Schwilk; Carl N. Skinner; Thomas A. Waldrop; C. Phillip Weatherspoon; Daniel A. Yaussy; Andrew Youngblood; Steve Zack

The 12-site National Fire and Fire Surrogate study (FFS) was a multivariate experiment that evaluated ecological consequences of alternative fuel-reduction treatments in seasonally dry forests of the US. Each site was a replicated experiment with a common design that compared an un-manipulated control, prescribed fire, mechanical and mechanical + fire treatments. Variables within the vegetation, fuelbed, forest floor and soil, bark beetles, tree diseases and wildlife were measured in 10-ha stands, and ecological response was compared among treatments at the site level, and across sites, to better understand the influence of differential site conditions. For most sites, treated stands were predicted to be more resilient to wildfire if it occurred shortly after treatment, but for most ecological variables, short-term response to treatments was subtle and transient. Strong site-specificity was observed in the response of most ecosystem variables, suggesting that practitioners employ adaptive management at the local scale. Because ecosystem components were tightly linked, adaptive management would need to include monitoring of a carefully chosen set of key variables. Mechanical treatments did not serve as surrogates for fire for most variables, suggesting that fire be maintained whenever possible. Restoration to pre-settlement conditions will require repeated treatments over time, with eastern forests requiring more frequent applications.


Ecosphere | 2012

Fuel treatment impacts on estimated wildfire carbon loss from forests in Montana, Oregon, California, and Arizona

Scott L. Stephens; Ralph E. J. Boerner; Jason J. Moghaddas; Emily E.Y. Moghaddas; Brandon M. Collins; Christopher B. Dow; Carl Edminster; Carl E. Fiedler; Danny L. Fry; Bruce R. Hartsough; Jon E. Keeley; Eric E. Knapp; James D. McIver; Carl N. Skinner; Andrew Youngblood

Using forests to sequester carbon in response to anthropogenically induced climate change is being considered across the globe. A recent U.S. executive order mandated that all federal agencies account for sequestration and emissions of greenhouse gases, highlighting the importance of understanding how forest carbon stocks are influenced by wildfire. This paper reports the effects of the most common forest fuel reduction treatments on carbon pools composed of live and dead biomass as well as potential wildfire emissions from six different sites in four western U.S. states. Additionally, we predict the median forest product life spans and uses of materials removed during mechanical treatments. Carbon loss from modeled wildfire-induced tree mortality was lowest in the mechanical plus prescribed fire treatments, followed by the prescribed fire-only treatments. Wildfire emissions varied from 10–80 Mg/ha and were lowest in the prescribed fire and mechanical followed by prescribed fire treatments at most sites. Mean biomass removals per site ranged from approximately 30–60 dry Mg/ha; the median lives of products in first use varied considerably (from 50 years). Our research suggests most of the benefits of increased fire resistance can be achieved with relatively small reductions in current carbon stocks. Retaining or growing larger trees also reduced the vulnerability of carbon loss from wildfire. In addition, modeled vulnerabilities to carbon losses and median forest product life spans varied considerably across our study sites, which could be used to help prioritize treatment implementation.


International Journal of Wildland Fire | 2008

Different interest group views of fuels treatments: survey results from fire and fire surrogate treatments in a Sierran mixed conifer forest, California, USA

Sarah McCaffrey; Jason J. Moghaddas; Scott L. Stephens

The present paper discusses results from a survey about the acceptance of and preferences for fuels treatments of participants following a field tour of the University of California Blodgett Forest Fire and Fire Surrogate Study Site. Although original expectations were that tours would be composed of general members of the public, individual tour groups ultimately were much more specialised, with tours made up of individuals from five distinct groups including foresters, environmentalists, entomologists, the Natural Resource Conservation Service, teachers, and high school or undergraduate students. This proved fortuitous as most studies of ‘public’ perceptions to date have been of general members of the public and little work has been done assessing the views of groups who may have more specific knowledge or interest in fuels treatments. Such assessment is perhaps long overdue given the importance of understanding characteristics of different audience segments in developing effective outreach programs. Analysis showed that group membership was in fact the key element in differences in survey responses with significant differences found between groups on overall acceptability of treatments, treatment preferences based on different land ownership and management types, and which variables were most important in determining treatment preferences.


Forest Ecology and Management | 2005

Experimental fuel treatment impacts on forest structure, potential fire behavior, and predicted tree mortality in a California mixed conifer forest

Scott L. Stephens; Jason J. Moghaddas


Journal of Forestry | 2010

Challenges and Approaches in Planning Fuel Treatments across Fire-Excluded Forested Landscapes

Brandon M. Collins; Scott L. Stephens; Jason J. Moghaddas; John J. Battles


Forest Ecology and Management | 2005

Fuel treatment effects on snags and coarse woody debris in a Sierra Nevada mixed conifer forest

Scott L. Stephens; Jason J. Moghaddas

Collaboration


Dive into the Jason J. Moghaddas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric E. Knapp

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

Jon E. Keeley

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Andrew Youngblood

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carl N. Skinner

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge