Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason J. Paxman is active.

Publication


Featured researches published by Jason J. Paxman.


Journal of Biological Chemistry | 2009

The Structure of the Bacterial Oxidoreductase Enzyme DsbA in Complex with a Peptide Reveals a Basis for Substrate Specificity in the Catalytic Cycle of DsbA Enzymes

Jason J. Paxman; Natalie A. Borg; James Horne; Philip E. Thompson; Yanni Chin; Pooja Sharma; Jamie S. Simpson; Jerome Wielens; Susannah Piek; Charlene M. Kahler; Harry Sakellaris; Mary C. Pearce; Stephen P. Bottomley; Jamie Rossjohn; Martin J. Scanlon

Oxidative protein folding in Gram-negative bacteria results in the formation of disulfide bonds between pairs of cysteine residues. This is a multistep process in which the dithiol-disulfide oxidoreductase enzyme, DsbA, plays a central role. The structure of DsbA comprises an all helical domain of unknown function and a thioredoxin domain, where active site cysteines shuttle between an oxidized, substrate-bound, reduced form and a DsbB-bound form, where DsbB is a membrane protein that reoxidizes DsbA. Most DsbA enzymes interact with a wide variety of reduced substrates and show little specificity. However, a number of DsbA enzymes have now been identified that have narrow substrate repertoires and appear to interact specifically with a smaller number of substrates. The transient nature of the DsbA-substrate complex has hampered our understanding of the factors that govern the interaction of DsbA enzymes with their substrates. Here we report the crystal structure of a complex between Escherichia coli DsbA and a peptide with a sequence derived from a substrate. The binding site identified in the DsbA-peptide complex was distinct from that observed for DsbB in the DsbA-DsbB complex. The structure revealed details of the DsbA-peptide interaction and suggested a mechanism by which DsbA can simultaneously show broad specificity for substrates yet exhibit specificity for DsbB. This mode of binding was supported by solution nuclear magnetic resonance data as well as functional data, which demonstrated that the substrate specificity of DsbA could be modified via changes at the binding interface identified in the structure of the complex.


Proceedings of the National Academy of Sciences of the United States of America | 2014

The antigen 43 structure reveals a molecular Velcro-like mechanism of autotransporter-mediated bacterial clumping

Begoña Heras; Makrina Totsika; Kate M. Peters; Jason J. Paxman; Christine L. Gee; Russell Jarrott; Matthew A. Perugini; Andrew E. Whitten; Mark A. Schembri

Significance Many persistent and chronic bacterial infections are associated with the formation of large cell aggregates and biofilms that are difficult to treat. This includes respiratory and urinary tract infections, infections on medical devices, and infections of the ear, gums, and heart. One mechanism used by bacteria to aggregate and form biofilms involves the expression of self-associating surface-located autotransporter proteins such as Antigen 43 (Ag43). Here we present the crystal structure of the functional passenger domain of Ag43 and demonstrate that its unique L-shaped structure drives the formation of cell aggregates via a molecular Velcro-like handshake mechanism. This work provides insight into the structure–function mechanisms that facilitate bacterial interactions during infection. Aggregation and biofilm formation are critical mechanisms for bacterial resistance to host immune factors and antibiotics. Autotransporter (AT) proteins, which represent the largest group of outer-membrane and secreted proteins in Gram-negative bacteria, contribute significantly to these phenotypes. Despite their abundance and role in bacterial pathogenesis, most AT proteins have not been structurally characterized, and there is a paucity of detailed information with regard to their mode of action. Here we report the structure–function relationships of Antigen 43 (Ag43a), a prototypic self-associating AT protein from uropathogenic Escherichia coli. The functional domain of Ag43a displays a twisted L-shaped β-helical structure firmly stabilized by a 3D hydrogen-bonded scaffold. Notably, the distinctive Ag43a L shape facilitates self-association and cell aggregation. Combining all our data, we define a molecular “Velcro-like” mechanism of AT-mediated bacterial clumping, which can be tailored to fit different bacterial lifestyles such as the formation of biofilms.


Archive | 2012

Enzymology of Bacterial Lysine Biosynthesis

Con Dogovski; Sarah C. Atkinson; Sudhir R. Dommaraju; Matthew T. Downton; Lilian Hor; Stephen Moore; Jason J. Paxman; Martin G. Peverelli; Theresa W. Qiu; Matthias Reumann; Tanzeela Siddiqui; Nicole L. Taylor; John Wagner; Jacinta M. Wubben; Matthew A. Perugini

Lysine is an essential amino acid in the mammalian diet, but can be synthesised de novo in bacteria, plants and some fungi (Dogovski et al., 2009; Hutton et al., 2007). In bacteria, the lysine biosynthesis pathway, also known as the diaminopimelate (DAP) pathway (Fig. 1), yields the important metabolites meso-2,6-diaminopimelate (meso-DAP) and lysine. Lysine is utilised for protein synthesis in bacteria and forms part of the peptidoglycan cross-link structure in the cell wall of most Gram-positive species; whilst meso-DAP is the peptidoglycan cross-linking moiety in the cell wall of Gram-negative bacteria and also Gram-positive Bacillus species (Burgess et al., 2008; Mitsakos et al., 2008; Voss et al., 2010) (Fig. 1).


Molecules | 2016

Targeting Bacterial Dsb Proteins for the Development of Anti-Virulence Agents

Roxanne P. Smith; Jason J. Paxman; Martin J. Scanlon; Begoña Heras

Recent years have witnessed a dramatic increase in bacterial antimicrobial resistance and a decline in the development of novel antibiotics. New therapeutic strategies are urgently needed to combat the growing threat posed by multidrug resistant bacterial infections. The Dsb disulfide bond forming pathways are potential targets for the development of antimicrobial agents because they play a central role in bacterial pathogenesis. In particular, the DsbA/DsbB system catalyses disulfide bond formation in a wide array of virulence factors, which are essential for many pathogens to establish infections and cause disease. These redox enzymes are well placed as antimicrobial targets because they are taxonomically widespread, share low sequence identity with human proteins, and many years of basic research have provided a deep molecular understanding of these systems in bacteria. In this review, we discuss disulfide bond catalytic pathways in bacteria and their significance in pathogenesis. We also review the use of different approaches to develop inhibitors against Dsb proteins as potential anti-virulence agents, including fragment-based drug discovery, high-throughput screening and other structure-based drug discovery methods.


Structure | 2016

Structural Determinants Defining the Allosteric Inhibition of an Essential Antibiotic Target

Tatiana P. Soares da Costa; Sebastien Desbois; Con Dogovski; Michael A. Gorman; Natalia E. Ketaren; Jason J. Paxman; Tanzeela Siddiqui; Leanne M. Zammit; Belinda M. Abbott; Roy M. Robins-Browne; Michael W. Parker; Geoffrey B. Jameson; Nathan E. Hall; Santosh Panjikar; Matthew A. Perugini

Dihydrodipicolinate synthase (DHDPS) catalyzes the first committed step in the lysine biosynthesis pathway of bacteria. The pathway can be regulated by feedback inhibition of DHDPS through the allosteric binding of the end product, lysine. The current dogma states that DHDPS from Gram-negative bacteria are inhibited by lysine but orthologs from Gram-positive species are not. The 1.65-Å resolution structure of the Gram-negative Legionella pneumophila DHDPS and the 1.88-Å resolution structure of the Gram-positive Streptococcus pneumoniae DHDPS bound to lysine, together with comprehensive functional analyses, show that this dogma is incorrect. We subsequently employed our crystallographic data with bioinformatics, mutagenesis, enzyme kinetics, and microscale thermophoresis to reveal that lysine-mediated inhibition is not defined by Gram staining, but by the presence of a His or Glu at position 56 (Escherichia coli numbering). This study has unveiled the molecular determinants defining lysine-mediated allosteric inhibition of bacterial DHDPS.


Mbio | 2016

Molecular and Structural Characterization of a Novel Escherichia coli Interleukin Receptor Mimic Protein

Danilo Gomes Moriel; Begoña Heras; Jason J. Paxman; Alvin W. Lo; Lendl Tan; Matthew J. Sullivan; Samantha J. Dando; Scott A. Beatson; Glen C. Ulett; Mark A. Schembri

ABSTRACT Urinary tract infection (UTI) is a disease of extremely high incidence in both community and nosocomial settings. UTIs cause significant morbidity and mortality, with approximately 150 million cases globally per year. Uropathogenic Escherichia coli (UPEC) is the primary cause of UTI and is generally treated empirically. However, the rapidly increasing incidence of UTIs caused by multidrug-resistant UPEC strains has led to limited available treatment options and highlights the urgent need to develop alternative treatment and prevention strategies. In this study, we performed a comprehensive analysis to define the regulation, structure, function, and immunogenicity of recently identified UPEC vaccine candidate C1275 (here referred to as IrmA). We showed that the irmA gene is highly prevalent in UPEC, is cotranscribed with the biofilm-associated antigen 43 gene, and is regulated by the global oxidative stress response OxyR protein. Localization studies identified IrmA in the UPEC culture supernatant. We determined the structure of IrmA and showed that it adopts a unique domain-swapped dimer architecture. The dimeric structure of IrmA displays similarity to those of human cytokine receptors, including the interleukin-2 receptor (IL-2R), interleukin-4 receptor (IL-4R), and interleukin-10 receptor (IL-10R) binding domains, and we showed that purified IrmA can bind to their cognate cytokines. Finally, we showed that plasma from convalescent urosepsis patients contains high IrmA antibody titers, demonstrating the strong immunogenicity of IrmA. Taken together, our results indicate that IrmA may play an important role during UPEC infection. IMPORTANCE Uropathogenic E. coli (UPEC) is the primary cause of urinary tract infection (UTI), a disease of major significance to human health. Globally, the incidence of UPEC-mediated UTI is strongly associated with increasing antibiotic resistance, making this extremely common infection a major public health concern. In this report, we describe the regulatory, structural, functional, and immunogenic properties of a candidate UPEC vaccine antigen, IrmA. We demonstrate that IrmA is a small UPEC protein that forms a unique domain-swapped dimer with structural mimicry to several human cytokine receptors. We also show that IrmA binds to IL-2, IL-4, and IL-10, is strongly immunogenic in urosepsis patients, and is coexpressed with factors associated with biofilm formation. Overall, this work suggests a potential novel contribution for IrmA in UPEC infection. Uropathogenic E. coli (UPEC) is the primary cause of urinary tract infection (UTI), a disease of major significance to human health. Globally, the incidence of UPEC-mediated UTI is strongly associated with increasing antibiotic resistance, making this extremely common infection a major public health concern. In this report, we describe the regulatory, structural, functional, and immunogenic properties of a candidate UPEC vaccine antigen, IrmA. We demonstrate that IrmA is a small UPEC protein that forms a unique domain-swapped dimer with structural mimicry to several human cytokine receptors. We also show that IrmA binds to IL-2, IL-4, and IL-10, is strongly immunogenic in urosepsis patients, and is coexpressed with factors associated with biofilm formation. Overall, this work suggests a potential novel contribution for IrmA in UPEC infection.


Methods of Molecular Biology | 2017

Bioinformatics Tools and Resources for Analyzing Protein Structures

Jason J. Paxman; Begoña Heras

The dramatic increase in the number of protein sequences and structures deposited in biological databases has led to the development of many bioinformatics tools and programs to manage, validate, compare, and interpret this large volume of data. In addition, powerful tools are being developed to use this sequence and structural data to facilitate protein classification and infer biological function of newly identified proteins. This chapter covers freely available bioinformatics resources on the World Wide Web that are commonly used for protein structure analysis.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2013

Cloning to crystallization of dihydrodipicolinate synthase from the intracellular pathogen Legionella pneumophila

Tanzeela Siddiqui; Jason J. Paxman; Con Dogovski; Santosh Panjikar; Matthew A. Perugini

Dihydrodipicolinate synthase (DHDPS) catalyses the rate-limiting step in the biosynthesis of meso-diaminopimelate and lysine. Here, the cloning, expression, purification and crystallization of DHDPS from the intracellular pathogen Legionella pneumophila are described. Crystals grown in the presence of high-molecular-weight PEG precipitant and magnesium chloride were found to diffract beyond 1.65 Å resolution. The crystal lattice belonged to the hexagonal space group P6₁22, with unit-cell parameters a=b=89.31, c=290.18 Å, and contained two molecules in the asymmetric unit. The crystal structure was determined by molecular replacement using a single chain of Pseudomonas aeruginosa DHDPS as the search model.


Proteomics | 2017

Autotransporter adhesins in Escherichia coli pathogenesis

Julieanne L. Vo; Gabriela Constanza Martínez Ortiz; Pramod Subedi; Shivakumar Keerthikumar; Suresh Mathivanan; Jason J. Paxman; Begoña Heras

Most bacteria produce adhesion molecules to facilitate the interaction with host cells and establish successful infections. An important group of bacterial adhesins belong to the autotransporter (AT) superfamily, the largest group of secreted and outer membrane proteins in Gram‐negative bacteria. AT adhesins possess diverse functions that facilitate bacterial colonisation, survival and persistence, and as such are often associated with increased bacterial fitness and pathogenic potential. In this review, we will describe AIDA‐I type AT adhesins, which comprise the biggest and most diverse group in the AT family. We will focus on Escherichia coli proteins and define general aspects of their biogenesis, distribution, structural properties and key roles in infection.


Scientific Reports | 2018

Recognition by host nuclear transport proteins drives disorder-to-order transition in Hendra virus V

Sarah C. Atkinson; Michelle D. Audsley; Kim G. Lieu; Glenn A. Marsh; David R. Thomas; Steven M. Heaton; Jason J. Paxman; Kylie M. Wagstaff; Ashley M. Buckle; Gregory W. Moseley; David A. Jans; Natalie A. Borg

Hendra virus (HeV) is a paramyxovirus that causes lethal disease in humans, for which no vaccine or antiviral agent is available. HeV V protein is central to pathogenesis through its ability to interact with cytoplasmic host proteins, playing key antiviral roles. Here we use immunoprecipitation, siRNA knockdown and confocal laser scanning microscopy to show that HeV V shuttles to and from the nucleus through specific host nuclear transporters. Spectroscopic and small angle X-ray scattering studies reveal HeV V undergoes a disorder-to-order transition upon binding to either importin α/β1 or exportin-1/Ran-GTP, dependent on the V N-terminus. Importantly, we show that specific inhibitors of nuclear transport prevent interaction with host transporters, and reduce HeV infection. These findings emphasize the critical role of host-virus interactions in HeV infection, and potential use of compounds targeting nuclear transport, such as the FDA-approved agent ivermectin, as anti-HeV agents.

Collaboration


Dive into the Jason J. Paxman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Makrina Totsika

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Andrew E. Whitten

Australian Nuclear Science and Technology Organisation

View shared research outputs
Top Co-Authors

Avatar

Charlene M. Kahler

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Con Dogovski

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pooja Sharma

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge