Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason L. Burkhead is active.

Publication


Featured researches published by Jason L. Burkhead.


Journal of Biological Chemistry | 2007

High Copper Selectively Alters Lipid Metabolism and Cell Cycle Machinery in the Mouse Model of Wilson Disease

Dominik Huster; Tina Purnat; Jason L. Burkhead; Martina Ralle; Oliver Fiehn; Franziska Stuckert; N. Erik Olson; Daniel Teupser; Svetlana Lutsenko

Copper is essential for human physiology, but in excess it causes the severe metabolic disorder Wilson disease. Elevated copper is thought to induce pathological changes in tissues by stimulating the production of reactive oxygen species that damage multiple cell targets. To better understand the molecular basis of this disease, we performed genome-wide mRNA profiling as well as protein and metabolite analysis for Atp7b-/- mice, an animal model of Wilson disease. We found that at the presymptomatic stages of the disease, copper-induced changes are inconsistent with widespread radical-mediated damage, which is likely due to the sequestration of cytosolic copper by metallothioneins that are markedly up-regulated in Atp7b-/- livers. Instead, copper selectively up-regulates molecular machinery associated with the cell cycle and chromatin structure and down-regulates lipid metabolism, particularly cholesterol biosynthesis. Specific changes in the transcriptome are accompanied by distinct metabolic changes. Biochemical and mass spectroscopy measurements revealed a 3.6-fold decrease of very low density lipoprotein cholesterol in serum and a 33% decrease of liver cholesterol, indicative of a marked decrease in cholesterol biosynthesis. Consistent with low cholesterol levels, the amount of activated sterol regulatory-binding protein 2 (SREBP-2) is increased in Atp7b-/- nuclei. However, the SREBP-2 target genes are dysregulated suggesting that elevated copper alters SREBP-2 function rather than its processing or re-localization. Thus, in Atp7b-/- mice elevated copper affects specific cellular targets at the transcription and/or translation levels and has distinct effects on liver metabolic function, prior to appearance of histopathological changes. The identification of the network of specific copper-responsive targets facilitates further mechanistic analysis of human disorders of copper misbalance.


Archives of Biochemistry and Biophysics | 2008

Cellular multitasking: the dual role of human Cu-ATPases in cofactor delivery and intracellular copper balance.

Svetlana Lutsenko; Arnab Gupta; Jason L. Burkhead; Vesna Zuzel

The human copper-transporting ATPases (Cu-ATPases) are essential for dietary copper uptake, normal development and function of the CNS, and regulation of copper homeostasis in the body. In a cell, Cu-ATPases maintain the intracellular concentration of copper by transporting copper into intracellular exocytic vesicles. In addition, these P-type ATPases mediate delivery of copper to copper-dependent enzymes in the secretory pathway and in specialized cell compartments such as secretory granules or melanosomes. The multiple functions of human Cu-ATPase necessitate complex regulation of these transporters that is mediated through the presence of regulatory domains in their structure, posttranslational modification and intracellular trafficking, as well as interactions with the copper chaperone Atox1 and other regulatory molecules. In this review, we summarize the current information on the function and regulatory mechanisms acting on human Cu-ATPases ATP7A and ATP7B. Brief comparison with the Cu-ATPase orthologs from other species is included.


Journal of Biological Chemistry | 2010

Wilson Disease at a Single Cell Level: INTRACELLULAR COPPER TRAFFICKING ACTIVATES COMPARTMENT-SPECIFIC RESPONSES IN HEPATOCYTES*

Martina Ralle; Dominik Huster; Stefan Vogt; Wiebke Schirrmeister; Jason L. Burkhead; Tony R. Capps; Lawrence W. Gray; Barry Lai; Edward B. Maryon; Svetlana Lutsenko

Wilson disease (WD) is a severe hepato-neurologic disorder that affects primarily children and young adults. WD is caused by mutations in ATP7B and subsequent copper overload. However, copper levels alone do not predict severity of the disease. We demonstrate that temporal and spatial distribution of copper in hepatocytes may play an important role in WD pathology. High resolution synchrotron-based x-ray fluorescence imaging in situ indicates that copper does not continuously accumulate in Atp7b−/− hepatocytes, but reaches a limit at 90–300 fmol. The lack of further accumulation is associated with the loss of copper transporter Ctr1 from the plasma membrane and the appearance of copper-loaded lymphocytes and extracellular copper deposits. The WD progression is characterized by changes in subcellular copper localization and transcriptome remodeling. The synchrotron-based x-ray fluorescence imaging and mRNA profiling both point to the key role of nucleus in the initial response to copper overload and suggest time-dependent sequestration of copper in deposits as a protective mechanism. The metabolic pathways, up-regulated in response to copper, show compartmentalization that parallels changes in subcellular copper concentration. In contrast, significant down-regulation of lipid metabolism is observed at all stages of WD irrespective of copper distribution. These observations suggest new stage-specific as well as general biomarkers for WD. The model for the dynamic role of copper in WD is proposed.


Biometals | 2011

Systems biology approach to Wilson’s disease

Jason L. Burkhead; Lawrence W. Gray; Svetlana Lutsenko

Wilson’s disease (WD) is a severe disorder of copper misbalance, which manifests with a wide spectrum of liver pathology and/or neurologic and psychiatric symptoms. WD is caused by mutations in a gene encoding a copper-transporting ATPase ATP7B and is accompanied by accumulation of copper in tissues, especially in the liver. Copper-chelation therapy is available for treatment of WD symptoms and is often successful, however, significant challenges remain with respect to timely diagnostics and treatment of the disease. The lack of genotype-phenotype correlation remains unexplained, the causes of fulminant liver failure are not known, and the treatment of neurologic symptoms is only partially successful, underscoring the need for better understanding of WD mechanisms and factors that influence disease manifestations. Recent gene and protein profiling studies in animal models of WD began to uncover cellular processes that are primarily affected by copper accumulation in the liver. The results of such studies, summarized in this review, revealed new molecular players and pathways (cell cycle and cholesterol metabolism, mRNA splicing and nuclear receptor signaling) linked to copper misbalance. A systems biology approach promises to generate a comprehensive view of WD onset and progression, thus helping with a more fine-tune treatment and monitoring of the disorder.


Journal of Biological Chemistry | 2009

COMMD1 Forms Oligomeric Complexes Targeted to the Endocytic Membranes via Specific Interactions with Phosphatidylinositol 4,5-Bisphosphate

Jason L. Burkhead; Clinton T. Morgan; Ujwal Shinde; Gabrielle Haddock; Svetlana Lutsenko

Copper metabolism Murr1 domain 1 (COMMD1) is a 21-kDa protein involved in copper export from the liver, NF-κB signaling, HIV infection, and sodium transport. The precise function of COMMD and the mechanism through which COMMD1 performs its multiple roles are not understood. Recombinant COMMD1 is a soluble protein, yet in cells COMMD1 is largely seen as targeted to cellular membranes. Using co-localization with organelle markers and cell fractionation, we determined that COMMD1 is located in the vesicles of the endocytic pathway, whereas little COMMD1 is detected in either the trans-Golgi network or lysosomes. The mechanism of COMMD1 recruitment to cell membranes was investigated using lipidspotted arrays and liposomes. COMMD1 specifically binds phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) in the absence of other proteins and does not bind structural lipids; the phosphorylation of PtdIns at position 4 is essential for COMMD1 binding. Proteolytic sensitivity and molecular modeling experiments identified two distinct domains in the structure of COMMD1. The C-terminal domain appears sufficient for lipid binding, because both the full-length and C-terminal domain proteins bind to PtdIns(4,5)P2. In native conditions, endogenous COMMD1 forms large oligomeric complexes both in the cytosol and at the membrane; interaction with PtdIns(4,5)P2 increases the stability of oligomers. Altogether, our results suggest that COMMD1 is a scaffold protein in a distinct sub-compartment of endocytic pathway and offer first clues to its role as a regulator of structurally unrelated membrane transporters.


Journal of Molecular Biology | 2011

Elevated Copper Remodels Hepatic RNA Processing Machinery in the Mouse Model of Wilson's Disease

Jason L. Burkhead; Martina Ralle; Phillip A. Wilmarth; Larry L. David; Svetlana Lutsenko

Copper is essential to mammalian physiology, and its homeostasis is tightly regulated. In humans, genetic defects in copper excretion result in copper overload and Wilsons disease (WD). Previous studies on the mouse model for WD (Atp7b(-)(/-)) revealed copper accumulation in hepatic nuclei and specific changes in mRNA profile prior to the onset of pathology. To find a molecular link between nuclear copper elevation and changes in hepatic transcriptome, we utilized quantitative ionomic and proteomic approaches. X-ray fluorescence and inductively coupled plasma mass spectrometry analysis indicate that copper in the Atp7b(-/-) nucleus, while highly elevated, does not markedly alter nuclear ion content. Widespread protein oxidation is also not observed, although the glutathione reductase SelH is upregulated, likely to maintain redox balance. We further demonstrate that accumulating copper affects the abundance and/or modification of a distinct subset of nuclear proteins. These proteins populate pathways that are most significantly associated with RNA processing. An alteration in splicing pattern was observed for hnRNP A2/B1, itself the RNA shuttling factor and spliceosome component. Analysis of hnRNP A2/B1 mRNA and protein revealed an increased retention of exon 2 and a selective 2-fold upregulation of a corresponding protein splice variant. Mass spectrometry measurements suggest that the nucleocytoplasmic distribution of RNA binding proteins, including hnRNP A2/B1, is altered in the Atp7b(-/-) liver. We conclude that remodeling of the RNA processing machinery is an important component of cell response to elevated copper that may guide pathology development in the early stages of WD.


Archive | 2013

The Role of Copper as a Modifier of Lipid Metabolism

Jason L. Burkhead; Svetlana Lutsenko

Dietary copper enters the body largely through the small intestine. Two membrane transporters are essential for this process. The high affinity copper uptake protein Ctr1 is responsible for making copper that enters via the apical membrane available in the cytosol for further utilization (1), whereas the copper-transporting ATPase ATP7A facilitates copper exit from the enterocytes into circulation (2) (Figure 1). Complete genetic inactivation of either transporter in experimental animals is embryonically lethal (3-5). However, partial inactivation or tissue specific inactivation of ATP7A or Ctr1, respectively, in either case is associated with copper accumulation in the intestine, impaired copper entry into the bloodstream, and severe copper deficiency in many organs and tissues (1). Copper deficiency, in turn, produces distinct metabolic changes that are discussed in detail in the following sections.


Journal of Nutritional Biochemistry | 2015

Nutrigenomics analysis reveals that copper deficiency and dietary sucrose up-regulate inflammation, fibrosis and lipogenic pathways in a mature rat model of nonalcoholic fatty liver disease ☆,☆☆,★

Savannah Tallino; Megan Duffy; Martina Ralle; María Paz Cortés; Mauricio Latorre; Jason L. Burkhead

Nonalcoholic fatty liver disease (NAFLD) prevalence is increasing worldwide, with the affected US population estimated near 30%. Diet is a recognized risk factor in the NAFLD spectrum, which includes nonalcoholic steatohepatitis (NASH) and fibrosis. Low hepatic copper (Cu) was recently linked to clinical NAFLD/NASH severity. Simple sugar consumption including sucrose and fructose is implicated in NAFLD, while consumption of these macronutrients also decreases liver Cu levels. Though dietary sugar and low Cu are implicated in NAFLD, transcript-level responses that connect diet and pathology are not established. We have developed a mature rat model of NAFLD induced by dietary Cu deficiency, human-relevant high sucrose intake (30% w/w) or both factors in combination. Compared to the control diet with adequate Cu and 10% (w/w) sucrose, rats fed either high-sucrose or low-Cu diet had increased hepatic expression of genes involved in inflammation and fibrogenesis, including hepatic stellate cell activation, while the combination of diet factors also increased ATP citrate lyase and fatty acid synthase gene transcription (fold change > 2, P < 0.02). Low dietary Cu decreased hepatic and serum Cu (P ≤ 0.05), promoted lipid peroxidation and induced NAFLD-like histopathology, while the combined factors also induced fasting hepatic insulin resistance and liver damage. Neither low Cu nor 30% sucrose in the diet led to enhanced weight gain. Taken together, transcript profiles, histological and biochemical data indicate that low Cu and high sucrose promote hepatic gene expression and physiological responses associated with NAFLD and NASH, even in the absence of obesity or severe steatosis.


Iubmb Life | 2017

The role of insufficient copper in lipid synthesis and fatty‐liver disease

Austin Morrell; Savannah Tallino; Lei Yu; Jason L. Burkhead

The essential transition metal copper is important in lipid metabolism, redox balance, iron mobilization, and many other critical processes in eukaryotic organisms. Genetic diseases where copper homeostasis is disrupted, including Menkes disease and Wilson disease, indicate the importance of copper balance to human health. The severe consequences of insufficient copper supply are illustrated by Menkes disease, caused by mutation in the X‐linked ATP7A gene encoding a protein that transports copper from intestinal epithelia into the bloodstream and across the blood–brain barrier. Inadequate copper supply to the body due to poor diet quality or malabsorption can disrupt several molecular level pathways and processes. Though much of the copper distribution machinery has been described and consequences of disrupted copper handling have been characterized in human disease as well as animal models, physiological consequences of sub‐optimal copper due to poor nutrition or malabsorption have not been extensively studied. Recent work indicates that insufficient copper may be important in a number of common diseases including obesity, ischemic heart disease, and metabolic syndrome. Specifically, marginal copper deficiency (CuD) has been reported as a potential etiologic factor in diseases characterized by disrupted lipid metabolism such as non‐alcoholic fatty‐liver disease (NAFLD). In this review, we discuss the available data suggesting that a significant portion of the North American population may consume insufficient copper, the potential mechanisms by which CuD may promote lipid biosynthesis, and the interaction between CuD and dietary fructose in the etiology of NAFLD.


PLOS Biology | 2018

Copper-dependent amino oxidase 3 governs selection of metabolic fuels in adipocytes

Haojun Yang; Martina Ralle; Michael J. Wolfgang; Neha Dhawan; Jason L. Burkhead; Susana Rodriguez; Jack H. Kaplan; G. William Wong; Norman J. Haughey; Svetlana Lutsenko

Copper (Cu) has emerged as an important modifier of body lipid metabolism. However, how Cu contributes to the physiology of fat cells remains largely unknown. We found that adipocytes require Cu to establish a balance between main metabolic fuels. Differentiating adipocytes increase their Cu uptake along with the ATP7A-dependent transport of Cu into the secretory pathway to activate a highly up-regulated amino-oxidase copper-containing 3 (AOC3)/semicarbazide-sensitive amine oxidase (SSAO); in vivo, the activity of SSAO depends on the organism’s Cu status. Activated SSAO oppositely regulates uptake of glucose and long-chain fatty acids and remodels the cellular proteome to coordinate changes in fuel availability and related downstream processes, such as glycolysis, de novo lipogenesis, and sphingomyelin/ceramide synthesis. The loss of SSAO-dependent regulation due to Cu deficiency, limited Cu transport to the secretory pathway, or SSAO inactivation shifts metabolism towards lipid-dependent pathways and results in adipocyte hypertrophy and fat accumulation. The results establish a role for Cu homeostasis in adipocyte metabolism and identify SSAO as a regulator of energy utilization processes in adipocytes.

Collaboration


Dive into the Jason L. Burkhead's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Savannah Tallino

University of Alaska Anchorage

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eve M. Wiggins

University of Alaska Anchorage

View shared research outputs
Top Co-Authors

Avatar

Kelsey A. Meacham

University of Alaska Anchorage

View shared research outputs
Researchain Logo
Decentralizing Knowledge