Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason L. Dragoo is active.

Publication


Featured researches published by Jason L. Dragoo.


Cells Tissues Organs | 2003

Comparison of Multi-Lineage Cells from Human Adipose Tissue and Bone Marrow

Daniel A. De Ugarte; Kouki Morizono; Amir Elbarbary; Zeni Alfonso; Patricia A. Zuk; Min Zhu; Jason L. Dragoo; Peter Ashjian; Bert Thomas; Prosper Benhaim; Irvin S. Y. Chen; John K. Fraser; Marc H. Hedrick

Our laboratory has recently characterized a population of cells from adipose tissue, termed processed lipoaspirate (PLA) cells, which have multi-lineage potential similar to bone-marrow-derived mesenchymal stem cells (MSCs). This study is the first comparison of PLA cells and MSCs isolated from the same patient. No significant differences were observed for yield of adherent stromal cells, growth kinetics, cell senescence, multi-lineage differentiation capacity, and gene transduction efficiency. Adipose tissue is an abundant and easily procured source of PLA cells, which have a potential like MSCs for use in tissue-engineering applications and as gene delivery vehicles.


Journal of Orthopaedic Research | 2003

Bone induction by BMP-2 transduced stem cells derived from human fat.

Jason L. Dragoo; Joon Y. Choi; Jay R. Lieberman; Jerry I. Huang; Patricia A. Zuk; Jeffery Zhang; Marc H. Hedrick; Prosper Benhaim

Purpose: We have isolated pluripotent mesenchymal progenitor cells in large numbers from liposuction aspirates (processed lipoaspirate cells or PLAs). This study examines the osteogenic potential of PLAs and bone marrow aspirate cells (BMAs), when exposed to either recombinant human bone morphogenetic protein (BMP)‐2 (rh‐BMP‐2) or adenovirus containing BMP‐2 cDNA (Ad‐BMP‐2).


Journal of Bone and Joint Surgery-british Volume | 2003

Tissue-engineered cartilage and bone using stem cells from human infrapatellar fat pads

Jason L. Dragoo; B. Samimi; Min Zhu; Sharon L. Hame; B. J. Thomas; Jay R. Lieberman; Marc H. Hedrick; Prosper Benhaim

Multipotential processed lipoaspirate (PLA) cells extracted from five human infrapatellar fat pads and embedded into fibrin glue nodules, were induced into the chondrogenic phenotype using chondrogenic media. The remaining cells were placed in osteogenic media and were transfected with an adenovirus carrying the cDNA for bone morphogenetic protein-2 (BMP-2). We evaluated the tissue-engineered cartilage and bone using in vitro techniques and by placing cells into the hind legs of five severe combined immunodeficient mice. After six weeks, radiological and histological analysis indicated that the PLA cells induced into the chondrogenic phenotype had the histological appearance of hyaline cartilage. Cells transfected with the BMP-2 gene media produced abundant bone, which was beginning to establish a marrow cavity. Tissue-engineered cartilage and bone from infrapatellar fat pads may prove to be useful for the treatment of osteochondral defects.


American Journal of Sports Medicine | 2011

Comparison of Growth Factor and Platelet Concentration From Commercial Platelet-Rich Plasma Separation Systems

Tiffany N. Castillo; Michael A. Pouliot; Hyeon Joo Kim; Jason L. Dragoo

Background: Clinical studies claim that platelet-rich plasma (PRP) shortens recovery times because of its high concentration of growth factors that may enhance the tissue repair process. Most of these studies obtained PRP using different separation systems, and few analyzed the content of the PRP used as treatment. Purpose: This study characterized the composition of single-donor PRP produced by 3 commercially available PRP separation systems. Study Design: Controlled laboratory study. Methods: Five healthy humans donated 100 mL of blood, which was processed to produce PRP using 3 PRP concentration systems (MTF Cascade, Arteriocyte Magellan, Biomet GPS III). Platelet, white blood cell (WBC), red blood cell, and fibrinogen concentrations were analyzed by automated systems in a clinical laboratory, whereas ELISA determined the concentrations of platelet-derived growth factor αβ and ββ (PDGF-αβ, PDGF-ββ), transforming growth factor β1 (TGF-β1), and vascular endothelial growth factor (VEGF). Results: There was no significant difference in mean PRP platelet, red blood cell, active TGF-β1, or fibrinogen concentrations among PRP separation systems. There was a significant difference in platelet capture efficiency. The highest platelet capture efficiency was obtained with Cascade, which was comparable with Magellan but significantly higher than GPS III. There was a significant difference among all systems in the concentrations of WBC, PDGF-αβ, PDGF-ββ, and VEGF. The Cascade system concentrated leukocyte-poor PRP, compared with leukocyte-rich PRP from the GPS III and Magellan systems. Conclusion: The GPS III and Magellan concentrate leukocyte-rich PRP, which results in increased concentrations of WBCs, PDGF-αβ, PDGF-ββ, and VEGF as compared with the leukocyte-poor PRP from Cascade. Overall, there was no significant difference among systems in the platelet concentration, red blood cell, active TGF-β1, or fibrinogen levels. Clinical Relevance: Products from commercially available PRP separation systems produce differing concentrations of growth factors and WBCs. Further research is necessary to determine the clinical relevance of these findings.


American Journal of Sports Medicine | 2012

Comparison of the Acute Inflammatory Response of Two Commercial Platelet-Rich Plasma Systems in Healthy Rabbit Tendons

Jason L. Dragoo; Hillary J. Braun; Jennah L. Durham; Bethany A. Ridley; Justin I. Odegaard; Richard Luong; Steven P. Arnoczky

Background: Numerous studies have shown platelet-rich plasma (PRP) preparations differ with respect to the inclusion of certain blood components, which may affect the host’s cellular response. Hypothesis: This study evaluated the inflammatory effect of Biomet GPS III leukocyte-rich PRP (LR-PRP) versus MTF Cascade leukocyte-poor PRP (LP-PRP) after intratendinous injection in an animal model. The authors anticipated that LR-PRP would incite a greater acute inflammatory response than LP-PRP. Study Design: Controlled laboratory study. Methods: A total of 17 skeletally mature New Zealand White rabbits were tested. In all cases, healthy patellar tendons were treated. In the control animals, one patellar tendon was injected with 2 mL autologous whole blood, and the other was injected with 2 mL sterile saline. Seven total tendons were injected with whole blood, and 7 tendons were injected with saline. In the experimental animals, one patellar tendon was injected with 2 mL LR-PRP, and the other was injected with 2 mL LP-PRP. Ten tendons were injected with LR-PRP, and 10 tendons were injected with LP-PRP. Animals were euthanized at 5 or 14 days after injection. Tendons were harvested and stained using hematoxylin and eosin and scored semi-quantitatively for total white blood cells (WBCs), mononuclear cells (macrophages and lymphocytes), polymorphonuclear cells (PMNs), vascularity, fiber structure, and fibrosis. Results: At 5 days after injection, tendons treated with LR-PRP had significantly greater overall tendon scores (6.3 ± 1.79 vs 1.8 ± 1.64, P = .012), as well as mean scores for fiber structure (1.4 ± 0.22 vs 0.50 ± 0.50, P = .012), denoting disrupted composition, total WBCs (1.1 ± 0.89 vs 0.10 ± 0.22, P = .014), mononuclear cells (macrophages and lymphocytes) (0.80 ± 0.45 vs 0.10 ± 0.22, P = .014), vascularity (1.7 ± 0.27 vs 0.80 ± 0.16, P = .008), and fibrosis (1.0 ± 0.35 vs 0.3 ± 0.45, P = .037) compared with tendons treated with LP-PRP. Otherwise, there were no significant differences in mononuclear cells (P = .590), PMN cells (P = 1.00), total WBCs (P = .811), vascularity (P = .650), or total tendon score (P = .596) in any of the treatment groups at 14 days. Conclusion: Compared with leukocyte-poor Cascade PRP, leukocyte-rich GPS III PRP causes a significantly greater acute inflammatory response at 5 days after injection. There is no significant difference in the inflammatory response or cellularity regardless of the injection type at 14 days after intratendinous injection. Clinical Relevance: Platelet-rich plasma injections are frequently prepared using commercial systems and are administered for clinical treatment of chronic tendinopathy. It is important to characterize the cellular responses elucidated by different injection preparations to further understand their effect on tissue healing and aid clinical decision making. Future investigations are necessary to apply these findings to the clinical setting.


American Journal of Sports Medicine | 2014

Platelet-Rich Plasma as a Treatment for Patellar Tendinopathy A Double-Blind, Randomized Controlled Trial

Jason L. Dragoo; Amy S. Wasterlain; Hillary J. Braun; Kevin T. Nead

Background: Previous studies have shown improvement in patellar tendinopathy symptoms after platelet-rich plasma (PRP) injections, but no randomized controlled trial has compared PRP with dry needling (DN) for this condition. Purpose: To compare clinical outcomes in patellar tendinopathy after a single ultrasound-guided, leukocyte-rich PRP injection versus DN. Study Design: Randomized controlled trial; Level of evidence, 1. Methods: A total of 23 patients with patellar tendinopathy on examination and MRI who had failed nonoperative treatment were enrolled and randomized to receive ultrasound-guided DN alone (DN group; n = 13) or with injection of leukocyte-rich PRP (PRP group; n = 10), along with standardized eccentric exercises. Patients and the physician providing follow-up care were blinded. Participants completed patient-reported outcome surveys before and at 3, 6, 9, 12, and ≥26 weeks after treatment during follow-up visits. The primary outcome measure was the Victorian Institute of Sports Assessment (VISA) score for patellar tendinopathy at 12 weeks, and secondary measures included the visual analog scale (VAS) for pain, Tegner activity scale, Lysholm knee scale, and Short Form (SF-12) questionnaire at 12 and ≥26 weeks. Results were analyzed using 2-tailed paired and unpaired t tests. Patients who were dissatisfied at 12 weeks were allowed to cross over into a separate unblinded arm. Results: At 12 weeks after treatment, VISA scores improved by a mean ± standard deviation of 5.2 ± 12.5 points (P = .20) in the DN group (n = 12) and by 25.4 ± 23.2 points (P = .01) in the PRP group (n = 9); at ≥26 weeks, the scores improved by 33.2 ± 14.0 points (P = .001) in the DN group (n = 9) and by 28.9 ± 25.2 points (P = .01) in the PRP group (n = 7). The PRP group had improved significantly more than the DN group at 12 weeks (P = .02), but the difference between groups was not significant at ≥26 weeks (P = .66). Lysholm scores were not significantly different between groups at 12 weeks (P = .81), but the DN group had improved significantly more than the PRP group at ≥26 weeks (P = .006). At 12 weeks, 3 patients in the DN group failed treatment and subsequently crossed over into the PRP group. These patients were excluded from the primary ≥26-week analysis. There were no treatment failures in the PRP group. No adverse events were reported. Recruitment was stopped because interim analysis demonstrated statistically significant and clinically important results. Conclusion: A therapeutic regimen of standardized eccentric exercise and ultrasound-guided leukocyte-rich PRP injection with DN accelerates the recovery from patellar tendinopathy relative to exercise and ultrasound-guided DN alone, but the apparent benefit of PRP dissipates over time.


American Journal of Sports Medicine | 2008

The Effect of Local Anesthetics Administered via Pain Pump on Chondrocyte Viability

Jason L. Dragoo; Tatiana Korotkova; Raj Kanwar; Billy Wood

Background Chondrolysis initiated by postoperative, intra-articular pain pumps has recently been described by multiple institutions. Purpose To evaluate the in vitro chondrotoxicity of anesthetic formulations commonly used in pain pumps. Study Design Controlled laboratory study. Methods Freshly isolated human articular chondrocytes were cultured for 24-, 48-, and 72-hour trials in a custom bioreactor that mimics the metabolism of synovial fluid. Chondrocytes were perfused in Dulbeccos Modified Eagles Medium 10% fetal bovine serum and one of the following medications: 1 % lidocaine, 1 % lidocaine with epinephrine, 0.25% bupivacaine, 0.25% bupivacaine with epinephrine, 0.5% bupivacaine, or 0.5% bupivacaine with epinephrine. Static and perfusion cultures with growth media were used as controls. All experiments were run in duplicate. Live/dead staining was performed, and the ratio of dead: Live cells was assessed by fluorescent microscopy and histomorphometry. Results Significantly more chondrocyte necrosis was found in all cultures with medications containing epinephrine (P < .05) at all time points. Similar necrosis rates were exhibited in 0.25% and 0.5% bupivacaine compared with controls at 24 and 48 hours. However, 0.5% bupivacaine produced significantly more cell death at 72 hours. Similar necrosis rates were exhibited with 1 % lidocaine compared to controls at 24 hours. Conclusion In this in vitro model, 0.25% and 0.5% bupivacaine caused minimal chondrocyte necrosis when used in pain pumps for a maximum of 48 hours. All anesthetics containing epinephrine (pH  4) were chondrotoxic and cannot be advocated for pain pump use. The use of 0.5% bupivacaine for greater than 48 hours is not recommended. Clinical Relevance The results of this study may help improve the safety of intra-articular pain pump use by examining the effects of local anesthetics on chondrocyte viability.


Journal of Orthopaedic Research | 2013

Six-week gait retraining program reduces knee adduction moment, reduces pain, and improves function for individuals with medial compartment knee osteoarthritis

Pete B. Shull; Amy Silder; Rebecca Shultz; Jason L. Dragoo; Thor F. Besier; Scott L. Delp; Mark R. Cutkosky

This study examined the influence of a 6‐week gait retraining program on the knee adduction moment (KAM) and knee pain and function. Ten subjects with medial compartment knee osteoarthritis and self‐reported knee pain participated in weekly gait retraining sessions over 6 weeks. Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores and a 10‐point visual‐analog pain scale score were measured at baseline, post‐training (end of 6 weeks), and 1 month after training ended. Gait retraining reduced the first peak KAM by 20% (p < 0.01) post‐training as a result of a 7° decrease in foot progression angle (i.e., increased internal foot rotation), compared to baseline (p < 0.01). WOMAC pain and function scores were improved at post‐training by 29% and 32%, respectively (p < 0.05) and visual‐analog pain scale scores improved by two points (p < 0.05). Changes in WOMAC pain and function were approximately 75% larger than the expected placebo effect (p < 0.05). Changes in KAM, foot progression angle, WOMAC pain and function, and visual‐analog pain score were retained 1 month after the end of the 6‐week training period (p < 0.05). These results show that a 6‐week gait retraining program can reduce the KAM and improve symptoms for individuals with medial compartment knee osteoarthritis and knee pain.


Journal of Biomechanics | 2013

Toe-in gait reduces the first peak knee adduction moment in patients with medial compartment knee osteoarthritis

Pete B. Shull; Rebecca Shultz; Amy Silder; Jason L. Dragoo; Thor F. Besier; Mark R. Cutkosky; Scott L. Delp

The first peak of the knee adduction moment has been linked to the presence, severity, and progression of medial compartment knee osteoarthritis. The objective of this study was to evaluate toe-in gait (decreased foot progression angle from baseline through internal foot rotation) as a means to reduce the first peak of the knee adduction moment in subjects with medial compartment knee osteoarthritis. Additionally, we examined whether the first peak in the knee adduction moment would cause a concomitant increase in the peak external knee flexion moment, which can eliminate reductions in the medial compartment force that result from lowering the knee adduction moment. We tested the following hypotheses: (a) toe-in gait reduces the first peak of the knee adduction moment, and (b) toe-in gait does not increase the peak external knee flexion moment. Twelve patients with medial compartment knee osteoarthritis first performed baseline walking trials and then toe-in gait trials at their self-selected speed on an instrumented treadmill in a motion capture laboratory. Subjects altered their foot progression angle from baseline to toe-in gait by an average of 5° (p<0.01), which reduced the first peak of the knee adduction moment by an average of 13% (p<0.01). Toe-in gait did not increase the peak external knee flexion moment (p=0.85). The reduced knee adduction moment was accompanied by a medially-shifted knee joint center and a laterally-shifted center of pressure during early stance. These results suggest that toe-in gait may be a promising non-surgical treatment for patients with medial compartment knee osteoarthritis.


American Journal of Sports Medicine | 2014

The Effect of Platelet-Rich Plasma Formulations and Blood Products on Human Synoviocytes: Implications for Intra-articular Injury and Therapy

Hillary J. Braun; Hyeon Joo Kim; Constance R. Chu; Jason L. Dragoo

Background: The effect of platelet-rich plasma (PRP) on chondrocytes has been studied in cell and tissue culture, but considerably less attention has been given to the effect of PRP on synoviocytes. Fibroblast-like synoviocytes (FLS) compose 80% of the normal human synovium and produce cytokines and matrix metalloproteinases that can mediate cartilage catabolism. Purpose: To compare the effects of leukocyte-rich PRP (LR-PRP), leukocyte-poor PRP (LP-PRP), red blood cell (RBC) concentrate, and platelet-poor plasma (PPP) on human FLS to determine whether leukocyte and erythrocyte concentrations of PRP formulations differentially affect the production of inflammatory mediators. Study Design: Controlled laboratory study. Methods: Peripheral blood was obtained from 4 donors and processed to create LR-PRP, LP-PRP, RBCs, and PPP. Human synoviocytes were cultured for 96 hours with the respective experimental conditions using standard laboratory conditions. Cell viability and inflammatory mediator production were then evaluated. Results: Treatment with LR-PRP resulted in significantly greater synoviocyte death (4.9% ± 3.1%) compared with LP-PRP (0.72% ± 0.70%; P = .035), phosphate-buffered saline (PBS) (0.39% ± 0.27%; P = .018), and PPP (0.26% ± 0.30%; P = .013). Synoviocytes treated with RBC concentrate demonstrated significantly greater cell death (12.5% ± 6.9%) compared with PBS (P < .001), PPP (P < .001), LP-PRP (P < .001), and LR-PRP (4.9% ± 3.1%; P < .001). Interleukin (IL)–1β content was significantly higher in cultures treated with LR-PRP (1.53 ± 0.86 pg/mL) compared with those treated with PBS (0.22 ± 0.295 pg/mL; P < .001), PPP (0.11 ± 0.179 pg/mL; P < .001), and RBCs (0.64 ± 0.58 pg/mL; P = .001). IL-6 content was also higher with LR-PRP (32,097.82 ± 22,844.300 pg/mL) treatment in all other groups (P < .001). Tumor necrosis factor–α levels were greatest in LP-PRP (9.97 ± 3.110 pg/mL), and this was significantly greater compared with all other culture conditions (P < .001). Interferon-γ levels were greatest in RBCs (64.34 ± 22.987 pg/mL) and significantly greater than all other culture conditions (P < .001). Conclusion: Treatment of synovial cells with LR-PRP and RBCs resulted in significant cell death and proinflammatory mediator production. Clinical Relevance: Clinicians should consider using leukocyte-poor, RBC-free formulations of PRP when administering intra-articularly.

Collaboration


Dive into the Jason L. Dragoo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex H. S. Harris

VA Palo Alto Healthcare System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge