Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason L. Eriksen is active.

Publication


Featured researches published by Jason L. Eriksen.


Nature | 2006

Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17.

Matt Baker; Ian R. Mackenzie; Stuart Pickering-Brown; Jennifer Gass; Rosa Rademakers; Caroline Lindholm; Julie S. Snowden; Jennifer Adamson; A. Dessa Sadovnick; Sara Rollinson; Ashley Cannon; Emily Dwosh; David Neary; Stacey Melquist; Anna Richardson; Dennis W. Dickson; Zdenek Berger; Jason L. Eriksen; Todd Robinson; Cynthia Zehr; Chad A. Dickey; Richard Crook; Eileen McGowan; David Mann; Bradley F. Boeve; Howard Feldman; Mike Hutton

Frontotemporal dementia (FTD) is the second most common cause of dementia in people under the age of 65 years. A large proportion of FTD patients (35–50%) have a family history of dementia, consistent with a strong genetic component to the disease. In 1998, mutations in the gene encoding the microtubule-associated protein tau (MAPT) were shown to cause familial FTD with parkinsonism linked to chromosome 17q21 (FTDP-17). The neuropathology of patients with defined MAPT mutations is characterized by cytoplasmic neurofibrillary inclusions composed of hyperphosphorylated tau. However, in multiple FTD families with significant evidence for linkage to the same region on chromosome 17q21 (D17S1787–D17S806), mutations in MAPT have not been found and the patients consistently lack tau-immunoreactive inclusion pathology. In contrast, these patients have ubiquitin (ub)-immunoreactive neuronal cytoplasmic inclusions and characteristic lentiform ub-immunoreactive neuronal intranuclear inclusions. Here we demonstrate that in these families, FTD is caused by mutations in progranulin (PGRN) that are likely to create null alleles. PGRN is located 1.7 Mb centromeric of MAPT on chromosome 17q21.31 and encodes a 68.5-kDa secreted growth factor involved in the regulation of multiple processes including development, wound repair and inflammation. PGRN has also been strongly linked to tumorigenesis. Moreover, PGRN expression is increased in activated microglia in many neurodegenerative diseases including Creutzfeldt–Jakob disease, motor neuron disease and Alzheimers disease. Our results identify mutations in PGRN as a cause of neurodegenerative disease and indicate the importance of PGRN function for neuronal survival.


Nature | 2001

A subset of NSAIDs lower amyloidogenic Aβ42 independently of cyclooxygenase activity

Sascha Weggen; Jason L. Eriksen; Pritam Das; Sarah A. Sagi; Rong Wang; Claus U. Pietrzik; Kirk A. Findlay; Tawnya E. Smith; Michael P. Murphy; Thomas Bulter; David E. Kang; Numa R. Marquez-Sterling; Todd E. Golde; Edward H. Koo

Epidemiological studies have documented a reduced prevalence of Alzheimers disease among users of nonsteroidal anti-inflammatory drugs (NSAIDs). It has been proposed that NSAIDs exert their beneficial effects in part by reducing neurotoxic inflammatory responses in the brain, although this mechanism has not been proved. Here we report that the NSAIDs ibuprofen, indomethacin and sulindac sulphide preferentially decrease the highly amyloidogenic Aβ42 peptide (the 42-residue isoform of the amyloid-β peptide) produced from a variety of cultured cells by as much as 80%. This effect was not seen in all NSAIDs and seems not to be mediated by inhibition of cyclooxygenase (COX) activity, the principal pharmacological target of NSAIDs. Furthermore, short-term administration of ibuprofen to mice that produce mutant β-amyloid precursor protein (APP) lowered their brain levels of Aβ42. In cultured cells, the decrease in Aβ42 secretion was accompanied by an increase in the Aβ(1–38) isoform, indicating that NSAIDs subtly alter γ-secretase activity without significantly perturbing other APP processing pathways or Notch cleavage. Our findings suggest that NSAIDs directly affect amyloid pathology in the brain by reducing Aβ42 peptide levels independently of COX activity and that this Aβ42-lowering activity could be optimized to selectively target the pathogenic Aβ42 species.


Journal of Clinical Investigation | 2003

NSAIDs and enantiomers of flurbiprofen target γ-secretase and lower Aβ42 in vivo

Jason L. Eriksen; Sarah A. Sagi; Tawnya E. Smith; Sascha Weggen; Pritam Das; Daniel C. McLendon; Victor V. Ozols; Kevin W. Jessing; Kenton Zavitz; Edward H. Koo; Todd E. Golde

Epidemiologic studies demonstrate that long-term use of NSAIDs is associated with a reduced risk for the development of Alzheimer disease (AD). In this study, 20 commonly used NSAIDs, dapsone, and enantiomers of flurbiprofen were analyzed for their ability to lower the level of the 42-amino-acid form of amyloid β protein (Aβ42) in a human H4 cell line. Thirteen of the NSAIDs and the enantiomers of flurbiprofen were then tested in acute dosing studies in amyloid β protein precursor (APP) transgenic mice, and plasma and brain levels of Aβ and the drug were evaluated. These studies show that (a) eight FDA-approved NSAIDs lower Aβ42 in vivo, (b) the ability of an NSAID to lower Aβ42 levels in cell culture is highly predicative of its in vivo activity, (c) in vivo Aβ42 lowering in mice occurs at drug levels achievable in humans, and (d) there is a significant correlation between Aβ42 lowering and levels of ibuprofen. Importantly, flurbiprofen and its enantiomers selectively lower Aβ42 levels in broken cell γ-secretase assays, indicating that these compounds directly target the γ-secretase complex that generates Aβ from APP. Of the compounds tested, meclofenamic acid, racemic flurbiprofen, and the purified R and S enantiomers of flurbiprofen lowered Aβ42 levels to the greatest extent. Because R-flurbiprofen reduces Aβ42 levels by targeting γ-secretase and has reduced side effects related to inhibition of cyclooxygenase (COX), it is an excellent candidate for clinical testing as an Aβ42 lowering agent.


Neuron | 2005

Aβ42 Is Essential for Parenchymal and Vascular Amyloid Deposition in Mice

Eileen McGowan; Fiona Pickford; Jungsu Kim; Luisa Onstead; Jason L. Eriksen; Cindy Yu; Lisa Skipper; M. Paul Murphy; Jenny Beard; Pritam Das; Karen Jansen; Michael W. DeLucia; Wen Lang Lin; Georgia Dolios; Rong Wang; Christopher B. Eckman; Dennis W. Dickson; Mike Hutton; John Hardy; Todd E. Golde

Considerable circumstantial evidence suggests that Abeta42 is the initiating molecule in Alzheimers disease (AD) pathogenesis. However, the absolute requirement for Abeta42 for amyloid deposition has never been demonstrated in vivo. We have addressed this by developing transgenic models that express Abeta1-40 or Abeta1-42 in the absence of human amyloid beta protein precursor (APP) overexpression. Mice expressing high levels of Abeta1-40 do not develop overt amyloid pathology. In contrast, mice expressing lower levels of Abeta1-42 accumulate insoluble Abeta1-42 and develop compact amyloid plaques, congophilic amyloid angiopathy (CAA), and diffuse Abeta deposits. When mice expressing Abeta1-42 are crossed with mutant APP (Tg2576) mice, there is also a massive increase in amyloid deposition. These data establish that Abeta1-42 is essential for amyloid deposition in the parenchyma and also in vessels.


Nature | 2008

Substrate-targeting γ-secretase modulators

Thomas Kukar; Thomas B. Ladd; Maralyssa Bann; Patrick C. Fraering; Rajeshwar Narlawar; Ghulam M. Maharvi; Brent Healy; Robert Chapman; Alfred T. Welzel; Robert W. Price; Brenda D. Moore; Vijayaraghavan Rangachari; Bernadette Cusack; Jason L. Eriksen; Karen Jansen-West; Christophe Verbeeck; Debra Yager; Christopher B. Eckman; Wenjuan Ye; Sarah A. Sagi; Barbara A. Cottrell; Justin W. Torpey; Terrone L. Rosenberry; Abdul H. Fauq; Michael S. Wolfe; Boris Schmidt; Dominic M. Walsh; Edward H. Koo; Todd E. Golde

Selective lowering of Aβ42 levels (the 42-residue isoform of the amyloid-β peptide) with small-molecule γ-secretase modulators (GSMs), such as some non-steroidal anti-inflammatory drugs, is a promising therapeutic approach for Alzheimer’s disease. To identify the target of these agents we developed biotinylated photoactivatable GSMs. GSM photoprobes did not label the core proteins of the γ-secretase complex, but instead labelled the β-amyloid precursor protein (APP), APP carboxy-terminal fragments and amyloid-β peptide in human neuroglioma H4 cells. Substrate labelling was competed by other GSMs, and labelling of an APP γ-secretase substrate was more efficient than a Notch substrate. GSM interaction was localized to residues 28–36 of amyloid-β, a region critical for aggregation. We also demonstrate that compounds known to interact with this region of amyloid-β act as GSMs, and some GSMs alter the production of cell-derived amyloid-β oligomers. Furthermore, mutation of the GSM binding site in the APP alters the sensitivity of the substrate to GSMs. These findings indicate that substrate targeting by GSMs mechanistically links two therapeutic actions: alteration in Aβ42 production and inhibition of amyloid-β aggregation, which may synergistically reduce amyloid-β deposition in Alzheimer’s disease. These data also demonstrate the existence and feasibility of ‘substrate targeting’ by small-molecule effectors of proteolytic enzymes, which if generally applicable may significantly broaden the current notion of ‘druggable’ targets.


Nature Medicine | 2005

Diverse compounds mimic Alzheimer disease–causing mutations by augmenting Aβ42 production

Thomas Kukar; Michael P. Murphy; Jason L. Eriksen; Sarah A. Sagi; Sascha Weggen; Tawnya E. Smith; Thomas B. Ladd; Murad Ali Khan; Rajashaker Kache; Jenny Beard; Mark K. Dodson; Sami Merit; Victor V. Ozols; Panos Z. Anastasiadis; Pritam Das; Abdul H. Fauq; Edward H. Koo; Todd E. Golde

Increased Aβ42 production has been linked to the development of Alzheimer disease. We now identify a number of compounds that raise Aβ42. Among the more potent Aβ42-raising agents identified are fenofibrate, an antilipidemic agent, and celecoxib, a COX-2–selective NSAID. Many COX-2–selective NSAIDs tested raised Aβ42, including multiple COX-2–selective derivatives of two Aβ42-lowering NSAIDs. Compounds devoid of COX activity and the endogenous isoprenoids FPP and GGPP also raised Aβ42. These compounds seem to target the γ-secretase complex, increasing γ-secretase–catalyzed production of Aβ42 in vitro. Short-term in vivo studies show that two Aβ42-raising compounds increase Aβ42 levels in the brains of mice. The elevations in Aβ42 by these compounds are comparable to the increases in Aβ42 induced by Alzheimer disease–causing mutations in the genes encoding amyloid β protein precursor and presenilins, raising the possibility that exogenous compounds or naturally occurring isoprenoids might increase Aβ42 production in humans.


Neuron | 2003

Caught in the Act: α-Synuclein Is the Culprit in Parkinson's Disease

Jason L. Eriksen; Ted M. Dawson; Dennis W. Dickson; Leonard Petrucelli

Abstract Previous reports on Parkinsons disease indicate that genetic mutations in α-synuclein result in the aberrant accumulation of this protein, causing toxic gain of function leading to the development of Parkinsons. A recent report on the Iowan kindred, an extended pedigree with an autosomal dominant form of this disease, provides new mechanistic insight into Parkinsons disease by showing that an elevation in wild-type α-synuclein protein is sufficient to develop the early-onset form of the disorder. This review discusses how insights gained from these studies of α-synuclein may direct future research into Parkinsons disease.


Human Molecular Genetics | 2008

Common variation in the miR-659 binding-site of GRN is a major risk factor for TDP43-positive frontotemporal dementia

Rosa Rademakers; Jason L. Eriksen; Matt Baker; Todd Robinson; Zeshan Ahmed; Sarah Lincoln; NiCole Finch; Nicola J. Rutherford; Richard Crook; Keith A. Josephs; Bradley F. Boeve; David S. Knopman; Ronald C. Petersen; Joseph E. Parisi; Richard J. Caselli; Zbigniew K. Wszolek; Ryan J. Uitti; Howard Feldman; Mike Hutton; Ian R. Mackenzie; Neill R. Graff-Radford; Dennis W. Dickson

Loss-of-function mutations in progranulin (GRN) cause ubiquitin- and TAR DNA-binding protein 43 (TDP-43)-positive frontotemporal dementia (FTLD-U), a progressive neurodegenerative disease affecting ∼10% of early-onset dementia patients. Here we expand the role of GRN in FTLD-U and demonstrate that a common genetic variant (rs5848), located in the 3′-untranslated region (UTR) of GRN in a binding-site for miR-659, is a major susceptibility factor for FTLD-U. In a series of pathologically confirmed FTLD-U patients without GRN mutations, we show that carriers homozygous for the T-allele of rs5848 have a 3.2-fold increased risk to develop FTLD-U compared with homozygous C-allele carriers (95% CI: 1.50–6.73). We further demonstrate that miR-659 can regulate GRN expression in vitro, with miR-659 binding more efficiently to the high risk T-allele of rs5848 resulting in augmented translational inhibition of GRN. A significant reduction in GRN protein was observed in homozygous T-allele carriers in vivo, through biochemical and immunohistochemical methods, mimicking the effect of heterozygous loss-of-function GRN mutations. In support of these findings, the neuropathology of homozygous rs5848 T-allele carriers frequently resembled the pathological FTLD-U subtype of GRN mutation carriers. We suggest that the expression of GRN is regulated by miRNAs and that common genetic variability in a miRNA binding-site can significantly increase the risk for FTLD-U. Translational regulation by miRNAs may represent a common mechanism underlying complex neurodegenerative disorders.


BMC Neuroscience | 2007

Chronic administration of R-flurbiprofen attenuates learning impairments in transgenic amyloid precursor protein mice

Thomas Kukar; Sonya Prescott; Jason L. Eriksen; Vallie M. Holloway; M. Paul Murphy; Edward H. Koo; Todd E. Golde; Michelle M. Nicolle

BackgroundLong-term use of non-steroidal anti-inflammatory drugs (NSAIDs) is associated with a reduced incidence of Alzheimers disease (AD). We and others have shown that certain NSAIDs reduce secretion of Aβ42 in cell culture and animal models, and that the effect of NSAIDs on Aβ42 is independent of the inhibition of cyclooxygenase by these compounds. Since Aβ42 is hypothesized to be the initiating pathologic molecule in AD, the ability of these compounds to lower Aβ42 selectively may be associated with their protective effect. We have previously identified R-flurbiprofen (tarenflurbil) as a selective Aβ42 lowering agent with greatly reduced cyclooxygenase activity that shows promise for testing this hypothesis. In this study we report the effect of chronic R-flurbiprofen treatment on cognition and Aβ loads in Tg2576 APP mice.ResultsA four-month preventative treatment regimen with R-flurbiprofen (10 mg/kg/day) was administered to young Tg2576 mice prior to robust plaque or Aβ pathology. This treatment regimen improved spatial learning as assessed by the Morris water maze, indicated by an increased spatial bias during the third probe trial and an increased utilization of a place strategy to solve the water maze. These results are consistent with an improvement in hippocampal- and medial temporal lobe-dependent memory function. A modest, though not statistically significant, reduction in formic acid-soluble levels of Aβ was also observed. To determine if R-flurbiprofen could reverse cognitive deficits in Tg2576 mice where plaque pathology was already robust, a two-week therapeutic treatment was given to older Tg2576 mice with the same dose of R-flurbiprofen. This approach resulted in a significant decrease in Aβ plaque burden but no significant improvement in spatial learning.ConclusionWe have found that chronic administration of R-flurbiprofen is able to attenuate spatial learning deficits if given prior to plaque deposition in Tg2576 mice. Given its ability to selectively target Aβ42 production and improve cognitive impairments in transgenic APP mice, as well as promising data from a phase 2 human clinical trial, future studies are needed to investigate the utility of R-flurbiprofen as an AD therapeutic and its possible mechanisms of action.


Journal of Neurochemistry | 2007

Progranulin: normal function and role in neurodegeneration.

Jason L. Eriksen; Ian R. A. Mackenzie

Progranulin (PGRN) is a multifunctional protein that has attracted significant attention in the neuroscience community following the recent discovery of PGRN mutations in some cases of frontotemporal dementia. Most of the pathogenic mutations result in null alleles, and it is thought that frontotemporal dementia in these families results from PGRN haploinsufficiency. The neuropathology associated with PGRN mutations is characterized by the presence of tau‐negative, ubiquitin‐immunoreactive neuronal inclusions (frontotemporal lobar degeneration with ubiquitinated inclusions) that are also positive for the transactivation response DNA binding protein with Mr 43 kD. The clinical phenotype includes behavioral abnormalities, language disorders and parkinsonism but not motor neuron disease. There is significant clinical variation between families with different PGRN mutations and among members of individual families. The normal function of PGRN is complex, with the full‐length form of the protein having trophic and anti‐inflammatory activity, whereas proteolytic cleavage generates granulin peptides that promote inflammatory activity. In the periphery, PGRN functions in wound healing responses and modulates inflammatory events. In the CNS, PGRN is expressed by neurons and microglia; consequently, reduced levels of PGRN could affect both neuronal survival and CNS inflammatory processes. In this review, we discuss current knowledge of the molecular genetics, neuropathology, clinical phenotype and functional aspects of PGRN in the context of neurodegenerative disease.

Collaboration


Dive into the Jason L. Eriksen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward H. Koo

University of California

View shared research outputs
Top Co-Authors

Avatar

Sascha Weggen

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge