Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason L. Talanian is active.

Publication


Featured researches published by Jason L. Talanian.


American Journal of Physiology-endocrinology and Metabolism | 2010

Exercise training increases sarcolemmal and mitochondrial fatty acid transport proteins in human skeletal muscle.

Jason L. Talanian; Graham P. Holloway; Laelie A. Snook; George J. F. Heigenhauser; Arend Bonen; Lawrence L. Spriet

Fatty acid oxidation is highly regulated in skeletal muscle and involves several sites of regulation, including the transport of fatty acids across both the plasma and mitochondrial membranes. Transport across these membranes is recognized to be primarily protein mediated, limited by the abundance of fatty acid transport proteins on the respective membranes. In recent years, evidence has shown that fatty acid transport proteins move in response to acute and chronic perturbations; however, in human skeletal muscle the localization of fatty acid transport proteins in response to training has not been examined. Therefore, we determined whether high-intensity interval training (HIIT) increased total skeletal muscle, sarcolemmal, and mitochondrial membrane fatty acid transport protein contents. Ten untrained females (22 +/- 1 yr, 65 +/- 2 kg; .VO(2peak): 2.8 +/- 0.1 l/min) completed 6 wk of HIIT, and biopsies from the vastus lateralis muscle were taken before training, and following 2 and 6 wk of HIIT. Training significantly increased maximal oxygen uptake at 2 and 6 wk (3.1 +/- 0.1, 3.3 +/- 0.1 l/min). Training for 6 wk increased FAT/CD36 at the whole muscle (10%) and mitochondrial levels (51%) without alterations in sarcolemmal content. Whole muscle plasma membrane fatty acid binding protein (FABPpm) also increased (48%) after 6 wk of training, but in contrast to FAT/CD36, sarcolemmal FABPpm increased (23%), whereas mitochondrial FABPpm was unaltered. The changes on sarcolemmal and mitochondrial membranes occurred rapidly, since differences (< or =2 wk) were not observed between 2 and 6 wk. This is the first study to demonstrate that exercise training increases fatty acid transport protein content in whole muscle (FAT/CD36 and FABPpm) and sarcolemmal (FABPpm) and mitochondrial (FAT/CD36) membranes in human skeletal muscle of females. These results suggest that increases in skeletal muscle fatty acid oxidation following training are related in part to changes in fatty acid transport protein content and localization.


Journal of Applied Physiology | 2008

Seven days of oral taurine supplementation does not increase muscle taurine content or alter substrate metabolism during prolonged exercise in humans

Stuart D.R. Galloway; Jason L. Talanian; Anna K. Shoveller; George J. F. Heigenhauser; Lawrence L. Spriet

This study examined 1) the plasma taurine response to acute oral taurine supplementation (T), and 2) the effects of 7 days of T on muscle amino acid content and substrate metabolism during 2 h of cycling at approximately 60% peak oxygen consumption (VO2peak). In the first part of the study, after an overnight fast, 7 volunteers (28+/-3 yr, 184+/-2 cm, 88.0+/-6.6 kg) ingested 1.66 g oral taurine doses with breakfast (8 AM) and lunch (12 noon), and blood samples were taken throughout the day. In the second part of the study, eight men (22+/-1 yr, 181+/-1 cm, 80.9+/-3.8 kg, 4.21+/-0.16 l/min VO2peak) cycled for 2 h after 7 days of placebo (P) ingestion (6 g glucose/day) and again following 7 days of T (5 g/day). In the first part of the study, plasma taurine was 64+/-4 microM before T and rose rapidly to 778+/-139 microM by 10 AM and remained elevated at noon (359+/-56 microM). Plasma taurine reached 973+/-181 microM at 1 PM and was 161+/-31 microM at 4 PM. In the second part of the study, seven days of T had no effect on muscle taurine content (mmol/kg dry muscle) at rest (P, 44+/-15 vs. T, 42+/-15) or after exercise (P, 43+/-12 vs. T, 43+/-11). There was no difference in muscle glycogen or other muscle metabolites between conditions, but there were notable interaction effects for muscle valine, isoleucine, leucine, cystine, glutamate, alanine, and arginine amino acid content following exercise after T. These data indicate that 1) acute T produces a 13-fold increase in plasma taurine concentration; 2) despite the ability to significantly elevate plasma taurine for extended periods throughout the day, 7 days of T does not alter skeletal muscle taurine content or carbohydrate and fat oxidation during exercise; and 3) T appears to have some impact on muscle amino acid response to exercise.


American Journal of Physiology-endocrinology and Metabolism | 2010

Prolonged moderate-intensity aerobic exercise does not alter apoptotic signaling and DNA fragmentation in human skeletal muscle

Joe Quadrilatero; Eric Bombardier; Sarah Michelle Norris; Jason L. Talanian; Matthew S. Palmer; Heather M. Logan; A. Russell Tupling; George J. F. Heigenhauser; Lawrence L. Spriet

Apoptosis in skeletal muscle plays an important role in age- and disease-related tissue dysfunction. Physical activity can influence apoptotic signaling; however, this process has not been well studied in human skeletal muscle. The purpose of this study was to perform a comprehensive analysis of apoptosis-related proteins/enzymes, DNA fragmentation, and oxidative stress in skeletal muscle of humans during an acute bout of prolonged moderate-intensity exercise. Eight healthy, recreationally active individuals (age 20.8 +/- 0.5 yr, Vo(2peak) 51.2 +/- 0.9 ml . kg(-1) . min(-1), BMI 21.5 +/- 0.8 kg/m(2)) exercised on a cycle ergometer at approximately 60% Vo(2peak) for 2 h. Muscle biopsies were obtained at rest as well as at 60 and 120 min of exercise. Although exercise was associated with a significant whole body and muscle metabolic response, there were no significant changes in the content of antiapoptotic (ARC, Bcl-2, Hsp70, XIAP) and proapoptotic (AIF, Bax, Smac) proteins, activity of proteolytic enzymes (caspase-3, caspase-8, caspase-9), DNA fragmentation, or TUNEL-positive nuclei in skeletal muscle. Furthermore, the protein levels of several antioxidant enzymes (catalase, CuZnSOD, MnSOD), concentrations of GSH and GSSG, and degree of ROS generation in skeletal muscle were not altered by exercise. Fiber type-specific analysis also revealed that ARC (P < 0.001) and Hsp70 (P < 0.05) protein were significantly higher in type I compared with type IIA and type IIAX/X fibers; however, protein levels were not affected by exercise. These findings suggest that a single bout of prolonged moderate-intensity aerobic exercise is not sufficient to alter apoptotic signaling in skeletal muscle of healthy humans.


Essays in Biochemistry | 2008

Legal pre-event nutritional supplements to assist energy metabolism

Lawrence L. Spriet; Christopher G. R. Perry; Jason L. Talanian

Physical training and proper nutrition are paramount for success in sport. A key tissue is skeletal muscle, as the metabolic pathways that produce energy or ATP allow the muscles to complete the many activities critical to success in sport. The energy-producing pathways must rapidly respond to the need for ATP during sport and produce energy at a faster rate or for a longer duration through training and proper nutrition which should translate into improved performance in sport activities. There is also continual interest in the possibility that nutritional supplements could further improve muscle metabolism and the provision of energy during sport. Most legal sports supplements do not improve performance following oral ingestion. However, three legal supplements that have received significant attention over the years include creatine, carnitine and sodium bicarbonate. The ingestion of large amounts of creatine for 4-6 days increases skeletal muscle creatine and phosphocreatine contents. The majority of the experimental evidence suggests that creatine supplementation can improve short-term exercise performance, especially in sports that require repeated short-term sprints. It may also augment the accretion of skeletal muscle when taken in combination with a resistance-exercise training programme. Supplementary carnitine has been touted to increase the uptake and oxidation of fat in the mitochondria. However, muscle carnitine levels are not augmented following oral carnitine supplementation and the majority of well-controlled studies have reported no effect of carnitine on enhancing fat oxidation, Vo(2max) or prolonged endurance exercise performance. The ingestion of sodium bicarbonate before intense exercise decreases the blood [H+] to potentially assist the efflux of H+ from the muscle and temper the metabolic acidosis associated with intense exercise. Many studies have reported performance increases in laboratory-based cycling tests and simulated running races in the field following sodium bicarbonate ingestion where the need for ATP from substrate phosphorylation is high. However, other studies have reported no benefit and the incidence of negative side effects is high.


Applied Physiology, Nutrition, and Metabolism | 2016

Low and moderate doses of caffeine late in exercise improve performance in trained cyclists.

Jason L. Talanian; Lawrence L. Spriet

The aim of the present study was to assess if low and moderate doses of caffeine delivered in a carbohydrate-electrolyte solution (CES) late in exercise improved time-trial (TT) performance. Fifteen (11 male, 4 female) cyclists (age, 22.5 ± 0.9 years; body mass, 69.3 ± 2.6 kg; peak oxygen consumption, 64.6 ± 1.9 mL·min(-1)·kg(-1)) completed 4 double-blinded randomized trials. Subjects completed 120 min of cycling at ∼60% peak oxygen consumption with 5 interspersed 120-s intervals at ∼82% peak oxygen consumption, immediately followed by 40-s intervals at 50 W. Following 80 min of cycling, subjects either ingested a 6% CES (PL), a CES with 100 mg (low dose, 1.5 ± 0.1 mg·kg body mass(-1)) of caffeine (CAF1), or a CES with 200 mg (moderate dose, 2.9 ± 0.1 mg·kg body mass(-1)) of caffeine (CAF2). Following the 120-min cycling challenge, cyclists completed a 6-kJ·kg body mass(-1) TT. There was no difference between respiratory, heart rate, glucose, free fatty acid, body mass, hematocrit, or urine specific gravity measurements between treatments. The CAF2 (26:36 ± 0:22 min:s) TT was completed faster than CAF1 (27:36 ± 0:32 min:s, p < 0.05) and both CAF1 and CAF2 TTs were completed faster than PL (28:41 ± 0:38 min:s, p < 0.05). Blood lactate was similar between trials and rose to a greater extent during the TT (p < 0.05). In summary, both doses of caffeine delivered late in exercise improved TT performance over the PL trial and the moderate dose (CAF2) improved performance to a greater extent than the low dose (CAF1).


Sports and Exercise Medicine - Open Journal | 2015

Defining Different Types of Interval Training: Do we need to use more specific terminology?

Jason L. Talanian

Interval training began gaining popularity in modern society throughout the mid 1900’s when track and field athletes started to incorporate them regularly into training programs. Soon after, Christensen, et al. published a study with a sample size of two concluding that “Research on intermittent work may open up a new field in work physiology”1 and in 1968 The Science of Swimming written by James Counsilman strongly advocated the use of sprints in training to optimize performance.2 This new found interest had peaked the curiosity of exercise physiologists and as a result a number of studies in the 1970’s utilized higher intensity intervals as training protocols. The consensus was that training intensity was a powerful tool to induce significant positive adaptations.3-6


Journal of Applied Physiology | 2007

The effects of training in hyperoxia vs. normoxia on skeletal muscle enzyme activities and exercise performance

Christopher G. R. Perry; Jason L. Talanian; George J. F. Heigenhauser; Lawrence L. Spriet


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2006

ADRENERGIC REGULATION OF HSL SERINE PHOSPHORYLATION AND ACTIVITY IN HUMAN SKELETAL MUSCLE DURING THE ONSET OF EXERCISE

Jason L. Talanian; Rebecca J. Tunstall; Matthew J. Watt; MyLinh Duong; Christopher G. R. Perry; Gregory R. Steinberg; Bruce E. Kemp; George J. F. Heigenhauser; Lawrence L. Spriet


The FASEB Journal | 2007

Low doses of caffeine late in exercise improve cycling time trial performance

Jason L. Talanian; Lawrence L. Spriet


The FASEB Journal | 2007

Oral taurine supplementation does not increase muscle taurine content or alter substrate metabolism during prolonged submaximal cycling in active males

Stuart D.R. Galloway; Jason L. Talanian; Anna Kate Shoveller; George J. F. Heigenhauser; Lawrence L. Spriet

Collaboration


Dive into the Jason L. Talanian's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge