Jason M. Klusowski
Yale University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jason M. Klusowski.
international symposium on information theory | 2017
Jason M. Klusowski; Andrew R. Barron
Estimation of functions of d variables is considered using ridge combinations of the form Σ<sup>m</sup><inf>k=1</inf> c<inf>1, k</inf>φ(Σ<sup>d</sup><inf>j=1</inf>c<inf>0, j, k</inf>x<inf>j</inf>-b<inf>k</inf>) where the activation function φ is a function with bounded value and derivative. These include single-hidden layer neural networks, polynomials, and sinusoidal models. From a sample of size n of possibly noisy values at random sites X ∊ B = [−1, 1]<sup>d</sup>, the minimax mean square error is examined for functions in the closure of the ℓ<inf>1</inf> hull of ridge functions with activation ϕ. It is shown to be of order d/n to a fractional power (when d is of smaller order than n), and to be of order (log d)/n to a fractional power (when d is of larger order than n). Dependence on constraints v<inf>0</inf> and v<inf>1</inf> on the ℓ<inf>1</inf> norms of inner parameter co and outer parameter c<inf>1</inf>, respectively, is also examined. Also, lower and upper bounds on the fractional power are given. The heart of the analysis is development of information-theoretic packing numbers for these classes of functions.
arXiv: Statistics Theory | 2016
Jason M. Klusowski; Andrew R. Barron
arXiv: Machine Learning | 2016
Jason M. Klusowski; W. D. Brinda
arXiv: Machine Learning | 2016
Jason M. Klusowski; Andrew R. Barron
arXiv: Machine Learning | 2017
Jason M. Klusowski; Dana Yang; W. D. Brinda
arXiv: Statistics Theory | 2018
Jason M. Klusowski; Yihong Wu
conference on learning theory | 2018
Jason M. Klusowski; Yihong Wu
arXiv: Statistics Theory | 2018
Victor-Emmanuel Brunel; Jason M. Klusowski; Dana Yang
arXiv: Machine Learning | 2018
Andrew R. Barron; Jason M. Klusowski
arXiv: Machine Learning | 2018
Jason M. Klusowski