Jason M. Millward
Charité
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jason M. Millward.
NeuroImage: Clinical | 2012
Kerstin Riek; Jason M. Millward; Isabell Hamann; Susanne Mueller; Caspar F. Pfueller; Friedemann Paul; Jürgen Braun; Carmen Infante-Duarte; Ingolf Sack
Cerebral magnetic resonance elastography (MRE) measures the viscoelastic properties of brain tissues in vivo. It was recently shown that brain viscoelasticity is reduced in patients with multiple sclerosis (MS), highlighting the potential of cerebral MRE to detect tissue pathology during neuroinflammation. To further investigate the relationship between inflammation and brain viscoelasticity, we applied MRE to a mouse model of MS, experimental autoimmune encephalomyelitis (EAE). EAE was induced and monitored by MRE in a 7-tesla animal MRI scanner over 4 weeks. At the peak of the disease (day 14 after immunization), we detected a significant decrease in both the storage modulus (G′) and the loss modulus (G″), indicating that both the elasticity and the viscosity of the brain are reduced during acute inflammation. Interestingly, these parameters normalized at a later time point (day 28) corresponding to the clinical recovery phase. Consistent with this, we observed a clear correlation between viscoelastic tissue alteration and the magnitude of perivascular T cell infiltration at both day 14 and day 28. Hence, acute neuroinflammation is associated with reduced mechanical cohesion of brain tissues. Moreover, the reduction of brain viscoelasticity appears to be a reversible process, which is restored when inflammation resolves. For the first time, our study has demonstrated the applicability of cerebral MRE in EAE, and showed that this novel imaging technology is highly sensitive to early tissue alterations resulting from the inflammatory processes. Thus, MRE may serve to monitor early stages of perivascular immune infiltration during neuroinflammation.
PLOS ONE | 2011
Katja Herges; Jason M. Millward; Nicole Hentschel; Carmen Infante-Duarte; Orhan Aktas; Frauke Zipp
Multiple sclerosis (MS) is an inflammatory autoimmune disease of the central nervous system. However, studies of MS and the animal model, experimental autoimmune encephalomyelitis (EAE), indicate that neuronal pathology is the principle cause of clinical disability. Thus, there is need to develop new therapeutic strategies that not only address immunomodulation but also neuroprotection. Here we show that the combination therapy of Glatiramer acetate (GA), an immunomodulatory MS therapeutic, and the neuroprotectant epigallocatechin-3-gallate (EGCG), the main phenol in green tea, have synergistic protective effects in vitro and in the EAE model. EGCG and GA together led to increased protection from glutamate- and TRAIL-induced neuronal cell death in vitro. EGCG combined with GA induced regeneration of hippocampal axons in an outgrowth assay. The combined application of EGCG and GA did not result in unexpected adverse events in vivo. Neuroprotective and neuroregenerative effects could be translated in the in vivo model, where combination treatment with EGCG and GA significantly delayed disease onset, strongly reduced clinical severity, even after onset of symptoms and reduced inflammatory infiltrates. These results illustrate the promise of combining neuroprotective and anti-inflammatory treatments and strengthen the prospects of EGCG as an adjunct therapy for neuroinflammatory and neurodegenerative diseases.
Asn Neuro | 2013
Jason M. Millward; Jörg Schnorr; Matthias Taupitz; Susanne Wagner; Jens Wuerfel; Carmen Infante-Duarte
Neuroinflammation during multiple sclerosis involves immune cell infiltration and disruption of the BBB (blood–brain barrier). Both processes can be visualized by MRI (magnetic resonance imaging), in multiple sclerosis patients and in the animal model EAE (experimental autoimmune encephalomyelitis). We previously showed that VSOPs (very small superparamagnetic iron oxide particles) reveal CNS (central nervous system) lesions in EAE which are not detectable by conventional contrast agents in MRI. We hypothesized that VSOP may help detect early, subtle inflammatory events that would otherwise remain imperceptible. To investigate the capacity of VSOP to reveal early events in CNS inflammation, we induced EAE in SJL mice using encephalitogenic T-cells, and administered VSOP prior to onset of clinical symptoms. In parallel, we administered VSOP to mice at peak disease, and to unmanipulated controls. We examined the distribution of VSOP in the CNS by MRI and histology. Prior to disease onset, in asymptomatic mice, VSOP accumulated in the choroid plexus and in spinal cord meninges in the absence of overt inflammation. However, VSOP was undetectable in the CNS of non-immunized control mice. At peak disease, VSOP was broadly distributed; we observed particles in perivascular inflammatory lesions with apparently preserved glia limitans. Moreover, at peak disease, VSOP was prominent in the choroid plexus and was seen in elongated endothelial structures, co-localized with phagocytes, and diffusely disseminated in the parenchyma, suggesting multiple entry mechanisms of VSOP into the CNS. Thus, using VSOP we were able to discriminate between inflammatory events occurring in established EAE and, importantly, we identified CNS alterations that appear to precede immune cell infiltration and clinical onset.
Acta Neuropathologica | 2015
Agata Mossakowski; Julian Pohlan; Daniel Bremer; Randall L. Lindquist; Jason M. Millward; Markus Bock; Karolin Pollok; Ronja Mothes; Leonard Viohl; Moritz Radbruch; Jenny Gerhard; Judith Bellmann-Strobl; Janina Behrens; Carmen Infante-Duarte; Anja Mähler; Michael Boschmann; Jan Leo Rinnenthal; Martina Füchtemeier; Josephine Herz; Florence Pache; Markus Bardua; Josef Priller; Anja E. Hauser; Friedemann Paul; Raluca Niesner; Helena Radbruch
The functional dynamics and cellular sources of oxidative stress are central to understanding MS pathogenesis but remain elusive, due to the lack of appropriate detection methods. Here we employ NAD(P)H fluorescence lifetime imaging to detect functional NADPH oxidases (NOX enzymes) in vivo to identify inflammatory monocytes, activated microglia, and astrocytes expressing NOX1 as major cellular sources of oxidative stress in the central nervous system of mice affected by experimental autoimmune encephalomyelitis (EAE). This directly affects neuronal function in vivo, indicated by sustained elevated neuronal calcium. The systemic involvement of oxidative stress is mirrored by overactivation of NOX enzymes in peripheral CD11b+ cells in later phases of both MS and EAE. This effect is antagonized by systemic intake of the NOX inhibitor and anti-oxidant epigallocatechin-3-gallate. Together, this persistent hyper-activation of oxidative enzymes suggests an “oxidative stress memory” both in the periphery and CNS compartments, in chronic neuroinflammation.
PLOS ONE | 2012
Helmar Waiczies; Jason M. Millward; Stefano Lepore; Carmen Infante-Duarte; Andreas Pohlmann; Thoralf Niendorf; Sonia Waiczies
A comprehensive view of brain inflammation during the pathogenesis of autoimmune encephalomyelitis can be achieved with the aid of high resolution non-invasive imaging techniques such as microscopic magnetic resonance imaging (μMRI). In this study we demonstrate the benefits of cryogenically-cooled RF coils to produce μMRI in vivo, with sufficient detail to reveal brain pathology in the experimental autoimmune encephalomyelitis (EAE) model. We could visualize inflammatory infiltrates in detail within various regions of the brain, already at an early phase of EAE. Importantly, this pathology could be seen clearly even without the use of contrast agents, and showed excellent correspondence with conventional histology. The cryogenically-cooled coil enabled the acquisition of high resolution images within short scan times: an important practical consideration in conducting animal experiments. The detail of the cellular infiltrates visualized by in vivo μMRI allows the opportunity to follow neuroinflammatory processes even during the early stages of disease progression. Thus μMRI will not only complement conventional histological examination but will also enable longitudinal studies on the kinetics and dynamics of immune cell infiltration.
Journal of Neuroimmunology | 2013
Sebastian M. Fiebiger; Helena Bros; Thomas Grobosch; Antonia Janssen; Coralie Chanvillard; Friedemann Paul; Jan Dörr; Jason M. Millward; Carmen Infante-Duarte
Oxidative stress and mitochondrial dysfunction appear to contribute to neurodegenerative processes during multiple sclerosis (MS). Thus, antioxidants may represent a therapeutic option for MS. The antioxidant idebenone was proven to be beneficial in Friedreichs ataxia and Lebers hereditary optic neuropathy, two disorders caused by mitochondrial alterations. Here we showed that idebenone protected neuronal HT22 cells from glutamate-induced death in vitro. However, in experimental autoimmune encephalomyelitis, idebenone failed to affect disease incidence or onset when applied preventively, or to reduce disease severity when applied therapeutically. Histopathological examination of CNS from idebenone treated mice showed no improvement in inflammation, demyelination, or axonal damage. Thus, we hypothesize that idebenone treatment will likely not benefit patients with MS.
Journal of Neuroimmunology | 2013
Isabell Hamann; Jan Dörr; Robert Glumm; Coralie Chanvillard; Antonia Janssen; Jason M. Millward; Friedemann Paul; Richard M. Ransohoff; Carmen Infante-Duarte
Natural killer (NK) cells from paired CSF and blood samples of patients with multiple sclerosis (MS), other neuroinflammatory diseases (IND), and non-inflammatory neurological diseases (NIND) were characterized using flow cytometry. NK cell frequency in CSF was overall decreased compared to blood, particularly in MS patients. In contrast to blood NK cells, during neuroinflammation, CSF NK cells display an immature phenotype with bright expression of CD56 and CD27 and reduced CX3CR1 expression. Our findings suggest that, as for central memory T cells, CSF may represent an intermediary compartment for NK cell trafficking and differentiation before entering the CNS parenchyma.
Experimental Neurology | 2014
Helena Bros; Jason M. Millward; Friedemann Paul; Raluca Niesner; Carmen Infante-Duarte
Oxidative stress and mitochondrial dysfunction appear to contribute to axon degeneration in numerous neurological disorders. However, how these two processes interact to cause axonal damage-and how this damage is initiated-remains unclear. In this study we used transected motor axons from murine peripheral roots to investigate whether oxidative stress alters mitochondrial dynamics in myelinated axons. We show that the nodes of Ranvier are the initial sites of mitochondrial damage induced by oxidative stress. There, mitochondria became depolarized, followed by alterations of the external morphology and disruption of the cristae, along with reduced mitochondrial transport. These mitochondrial changes expanded from the nodes of Ranvier bidirectionally towards both internodes and eventually affected the entire mitochondrial population in the axon. Supplementing axonal bioenergetics by applying nicotinamide adenine dinucleotide and methyl pyruvate, rendered the mitochondria at the nodes of Ranvier resistant to these oxidative stress-induced changes. Importantly, this inhibition of mitochondrial damage protected the axons from degeneration. In conclusion, we present a novel ex vivo approach for monitoring mitochondrial dynamics within axons, which proved suitable for detecting mitochondrial changes upon exogenous application of oxidative stress. Our results indicate that the nodes of Ranvier are the site of initial mitochondrial damage in peripheral axons, and suggest that dysregulation of axonal bioenergetics plays a critical role in oxidative stress-triggered mitochondrial alterations and subsequent axonal injury. These novel insights into the mechanisms underlying axon degeneration may have implications for neurological disorders with a degenerative component.
PLOS ONE | 2012
Coralie Chanvillard; Jason M. Millward; Marta Lozano; Isabell Hamann; Friedemann Paul; Frauke Zipp; Jan Dörr; Carmen Infante-Duarte
Mitoxantrone is one of the few drugs approved for the treatment of progressive multiple sclerosis (MS). However, the prolonged use of this potent immunosuppressive agent is limited by the appearance of severe side effects. Apart from its general cytotoxic effect, the mode of action of mitoxantrone on the immune system is poorly understood. Thus, to develop safe therapeutic approaches for patients with progressive MS, it is essential to elucidate how mitoxantrone exerts it benefits. Accordingly, we initiated a prospective single-arm open-label study with 19 secondary progressive MS patients. We investigated long-term effects of mitoxantrone on patient peripheral immune subsets using flow cytometry. While we corroborate that mitoxantrone persistently suppresses B cells in vivo, we show for the first time that treatment led to an enrichment of neutrophils and immunomodulatory CD8low T cells. Moreover, sustained mitoxantrone applications promoted not only persistent NK cell enrichment but also NK cell maturation. Importantly, this mitoxantrone-induced NK cell maturation was seen only in patients that showed a clinical response to treatment. Our data emphasize the complex immunomodulatory role of mitoxantrone, which may account for its benefit in MS. In particular, these results highlight the contribution of NK cells to mitoxantrone efficacy in progressive MS.
Multiple Sclerosis Journal | 2016
Laura Hertwig; Florence Pache; Silvina Romero-Suarez; Klarissa Hanja Stürner; Nadja Borisow; Janina Behrens; Judith Bellmann-Strobl; Bibiane Seeger; Natascha Asselborn; Klemens Ruprecht; Jason M. Millward; Carmen Infante-Duarte; Friedemann Paul
Background: In contrast to multiple sclerosis (MS), lesions in neuromyelitis optica (NMO) frequently contain neutrophils. However, the phenotypic profile of neutrophils in these two distinct pathologies remains unknown. Objective: Our aim is to better understand the potential contribution of neutrophils to NMO and MS pathology. Methods: We performed the first functional analysis of blood neutrophils in NMO and MS, including evaluation of neutrophil immune response (fMLP receptor, TLR2), chemotaxis and migration (CXCR1, CD62L, CD43), regulation of complement (CD46, CD55, CD59), respiratory burst, phagocytosis and degranulation. Results: Compared with healthy controls (HC), neutrophils in NMO and MS show an activated phenotype characterized by an increased surface expression of TLR2 and fMLP receptor. However, contrary to MS neutrophils, NMO neutrophils show reduced adhesion and migratory capacity as well as decreased reduced production of reactive oxygen species (respiratory burst) and degranulation. Conclusion: Although NMO and MS neutrophils display an activated phenotype in comparison with HC, NMO neutrophils show a compromised functionality when compared with MS patients. These results suggest a distinct functional profile of neutrophils in MS and NMO.