Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason M. Porter is active.

Publication


Featured researches published by Jason M. Porter.


Journal of Physical Chemistry A | 2014

Electronic structure and spectroscopic analysis of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ion pair.

Shubham Vyas; Christopher Brian Dreyer; Jason G. Slingsby; David Bicknase; Jason M. Porter; C. Mark Maupin

Electronic and structural properties of the room temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulonyl)imide are studied using density functional theory (DFT) methods in addition to infrared and UV-vis spectroscopy. The DFT methods were conducted for both gas phase and solution phase using the integral equation formalism polarizable continuum model, while optical absorption experiments were conducted using neat and dilute methanol solutions. Three energetically similar conformers were obtained for each of the gas phase and solution phase DFT calculations. These multiple configurations were considered when analyzing the molecular interactions between the ion pair and for a molecular-level interpretation of the experimental IR and UV-vis spectroscopy data. Excitation energies of low-lying singlet excited states of the conformers were calculated with time-dependent DFT and experimentally with UV-vis absorption spectra. Difference density plots and excited-state calculations in the gas phase are found to be in good agreement with the experimental findings, while the implicit solvation model calculations adversely impacted the accuracy of the predicted spectra.


Journal of Heat Transfer-transactions of The Asme | 2006

Metaheuristic Optimization of a Discrete Array of Radiant Heaters

Jason M. Porter; Marvin E. Larsen; J. Wesley Barnes; John R. Howell

The design of radiant enclosures is an active area of research in radiation heat transfer. When design variables are discrete such as for radiant heater arrays with on-off control of individual heaters, current methods of design optimization fail. This paper reports the development of a metaheuristic thermal radiation optimization approach. Two metaheuristic optimization methods are explored: simulated annealing and tabu search. Both approaches are applied to a combinatorial radiant enclosure design problem. Configuration factors are used to develop a dynamic neighborhood for the tabu search algorithm. Results are presented from the combinatorial optimization problem. Tabu search with a problem specific dynamic neighborhood definition is shown to find better solutions than the benchmark simulated annealing approach in less computation time.


Bioresource Technology | 2014

Techno-economic analysis of wastewater sludge gasification: A decentralized urban perspective

Nicholas P.G. Lumley; Dotti F. Ramey; Ana L. Prieto; Robert J. Braun; Tzahi Y. Cath; Jason M. Porter

The successful management of wastewater sludge for small-scale, urban wastewater treatment plants, (WWTPs), faces several financial and environmental challenges. Common management strategies stabilize sludge for land disposal by microbial processes or heat. Such approaches require large footprint processing facilities or high energy costs. A new approach considers converting sludge to fuel which can be used to produce electricity on-site. This work evaluated several thermochemical conversion (TCC) technologies from the perspective of small urban WWTPs. Among TCC technologies, air-blown gasification was found to be the most suitable approach. A gasification-based generating system was designed and simulated in ASPEN Plus® to determine net electrical and thermal outputs. A technical analysis determined that such a system can be built using currently available technologies. Air-blown gasification was found to convert sludge to electricity with an efficiency greater than 17%, about triple the efficiency of electricity generation using anaerobic digester gas. This level of electricity production can offset up to 1/3 of the electrical demands of a typical WWTP. Finally, an economic analysis concluded that a gasification-based power system can be economically feasible for WWTPs with raw sewage flows above 0.093m(3)/s (2.1 million gallons per day), providing a profit of up to


Applied Optics | 2009

Two-color-absorption sensor for time-resolved measurements of gasoline concentration and temperature

Sung Hyun Pyun; Jason M. Porter; Jay B. Jeffries; Ronald K. Hanson; Juan Montoya; Mark G. Allen; Kevin R. Sholes

3.5 million over an alternative, thermal drying and landfill disposal.


Applied Spectroscopy | 2017

A Novel Optical Diagnostic for In Situ Measurements of Lithium Polysulfides in Battery Electrolytes

Najmus Saqib; Cody J. Silva; C. Mark Maupin; Jason M. Porter

A midinfrared absorption sensor for crank-angle-resolved in-cylinder measurements of gasoline concentration and gas temperature for spark-ignition internal-combustion engines is reported, and design considerations and validation testing in the controlled environments of a heated cell and shock-heated gases are discussed. Mid-IR laser light was tuned to transitions in the strong absorption bands associated with C-H stretching vibration near 3.4 microm, and time-resolved fuel vapor concentration and gas temperature were determined simultaneously from the absorption at two different wavelengths. These two infrared laser wavelengths were simultaneously produced by difference-frequency generation, which combines a near-IR signal laser with two near-IR pump lasers in a periodically poled lithium niobate crystal. Injection current modulation of the pump lasers produced intensity modulation of the mid-IR, which allowed the transmitted signals from the two laser wavelengths to be detected on a single detector and separated by frequency demultiplexing. Injection current modulation produced a wavelength modulation synchronous with the intensity modulation for each of the laser wavelengths, and accurate measurement of the gasoline absorption signal required the effects of wavelength modulation to be considered. Validation experiments were conducted for a single-component hydrocarbon fuel (2,2,4-trimethyl-pentane, commonly known as iso-octane) and a gasoline blend in a heated static cell (300 < or = T < or = 600 K) and behind planar shock waves (600 < T < 1100 K) in a shock tube. With a bandwidth of 10 kHz, the measured fuel concentrations agreed within 5% RMS and the measured temperature agreed within 3% RMS to the known values. The 10 kHz bandwidth is sufficient to resolve 1 crank-angle degree at 1600 RPM.


Review of Scientific Instruments | 2015

System overview and characterization of a high-temperature, high-pressure, entrained-flow, laboratory-scale gasifier

Madison A. Kelley; Micah S. Jakulewicz; Christopher Brian Dreyer; Terence E. Parker; Jason M. Porter

An optical diagnostic technique to determine the order and concentration of lithium polysulfides in lithium–sulfur (Li–S) battery electrolytes has been developed. One of the major challenges of lithium–sulfur batteries is the problem of polysulfide shuttling between the electrodes, which leads to self-discharge and loss of active material. Here we present an optical diagnostic for quantitative in situ measurements of lithium polysulfides using attenuated total reflection Fourier transform infrared (FT-IR) spectroscopy. Simulated infrared spectra of lithium polysulfide molecules were generated using computational quantum chemistry routines implemented in Gaussian 09. The theoretical spectra served as a starting point for experimental characterization of lithium polysulfide solutions synthesized by the direct reaction of lithium sulfide and sulfur. Attenuated total reflection FT-IR spectroscopy was used to measure absorption spectra. The lower limit of detection with this technique is 0.05 M. Measured spectra revealed trends with respect to polysulfide order and concentration, consistent with theoretical predictions, which were used to develop a set of equations relating the order and concentration of lithium polysulfides in a sample to the position and area of a characteristic infrared absorption band. The diagnostic routine can measure the order and concentration to within 5% and 0.1 M, respectively.


ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems | 2005

Discrete Optimization of Radiant Heaters With Simulated Annealing

Jason M. Porter; Marvin E. Larsen; John R. Howell

The high-temperature, high-pressure, entrained-flow, laboratory-scale gasifier at the Colorado School of Mines, including the primary systems and the supporting subsystems, is presented. The gasifier is capable of operating at temperatures and pressures up to 1650 °C and 40 bar. The heated section of the reactor column has an inner diameter of 50 mm and is 1 m long. Solid organic feedstock (e.g., coal, biomass, and solid waste) is ground into batches with particle sizes ranging from 25 to 90 μm and is delivered to the reactor at feed rates of 2-20 g/min. The maximum useful power output of the syngas is 10 kW, with a nominal power output of 1.2 kW. The initial characterization and demonstration results of the gasifier system with a coal feedstock are also reported.


Applied Spectroscopy | 2017

Thermal Breakdown Kinetics of 1-Ethyl-3-Methylimidazolium Ethylsulfate Measured Using Quantitative Infrared Spectroscopy:

Jeffrey L. Wheeler; McKinley Pugh; S. Jake Atkins; Jason M. Porter

The simulated annealing algorithm is used to seek optimal radiant heater configurations that provide a desired distribution of incident radiant energy onto a surface. The problem is motivated by a need to create well-understood boundary conditions that simulate fire environments. A bank of halogen lamps irradiates the back of a thin black plate (called a shroud), which simulates the fire environment. For such fire simulations, shroud temperatures routinely exceed 1000 °C and thermal radiation is the dominant mode of heat transfer. The test specimen is then heated by placing it in front of the shroud. The panel, accommodating the radiant heaters (lamps), provides equally spaced slots all of which are powered at the same voltage. Lamp positioning is crucial to obtaining a uniform temperature on the shroud, but determining the best positioning of the lamps experimentally through trial and error has proven difficult. The discrete optimization problem searches possible lamp configurations by simulating adding or removing lamps from the panel. Inverse heat transfer methods have been successfully applied to similar problems. Applying inverse heat transfer methods to this problem, the desired boundary conditions on the shroud are used to solve for the required heater settings. Two boundary conditions are needed: the temperature profile and the heat flux profile on the shroud. The heat flux profile is determined by calculating the radiation heat transfer between the shroud and the test object. However, because the heaters used in the design can only assume discrete positions and are all maintained at the same power level, traditional inverse methods fail. A discrete inverse radiation heat transfer solution method is needed. In this study, a simulated annealing optimization routine is used to determine optimal heater positions given desired boundary conditions on the shroud. Computational characteristics of simulated annealing are presented as well as results of the optimization.Copyright


Archive | 2015

Advanced Hydrogen Transport Membrane for Coal Gasification

Joseph Schwartz; Jason M. Porter; Neil Patki; Madison A. Kelley; Josh Stanislowski; Scott Tolbert; J. Douglas Way; David Makuch

In this work, the thermal stability of the room temperature ionic liquid (RTIL) 1-ethyl-3-methylimidazolium ethylsulfate ([EMIM][EtSO4]) is investigated using infrared (IR) spectroscopy. Quantitative IR absorption spectral data are measured for heated [EMIM][EtSO4]. Spectra have been collected between 25 ℃ and 100 ℃ using a heated optical cell. Multiple samples and cell pathlengths are used to determine quantitative values for the molar absorptivity of [EMIM][EtSO4]. These results are compared to previous computational models of the ion pair. These quantitative spectra are used to measure the rate of thermal decomposition of [EMIM][EtSO4] at elevated temperatures. The spectroscopic measurements of the rate of decomposition show that thermogravimetric methods overestimate the thermal stability of [EMIM][EtSO4].


REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: VOLUME 32 | 2013

Quantitative assessment of thermal diffusion using NDE

C. T. Howard; E. A. Pfeif; Jason M. Porter; Brajendra Mishra; D. L. Olson

A pilot-scale hydrogen transport membrane (HTM) separator was built that incorporated 98 membranes that were each 24 inches long. This separator used an advanced design to minimize the impact of concentration polarization and separated over 1000 scfh of hydrogen from a hydrogen-nitrogen feed of 5000 scfh that contained 30% hydrogen. This mixture was chosen because it was representative of the hydrogen concentration expected in coal gasification. When tested with an operating gasifier, the hydrogen concentration was lower and contaminants in the syngas adversely impacted membrane performance. All 98 membranes survived the test, but flux was lower than expected. Improved ceramic substrates were produced that have small surface pores to enable membrane production and large pores in the bulk of the substrate to allow high flux. Pd-Au was chosen as the membrane alloy because of its resistance to sulfur contamination and good flux. Processes were developed to produce a large quantity of long membranes for use in the demonstration test.

Collaboration


Dive into the Jason M. Porter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guido Bender

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Michael Ulsh

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Najmus Saqib

Colorado School of Mines

View shared research outputs
Top Co-Authors

Avatar

Adam Phillips

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sean P. Duran

Colorado School of Mines

View shared research outputs
Researchain Logo
Decentralizing Knowledge