Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason M. Williams is active.

Publication


Featured researches published by Jason M. Williams.


PLOS Biology | 2007

Hypoinsulinemia regulates amphetamine-induced reverse transport of dopamine

Jason M. Williams; W. Anthony Owens; Gregory H. Turner; Christine Saunders; Concetta Dipace; Randy D. Blakely; John C. Gore; Lynette C. Daws; Malcolm J. Avison; Aurelio Galli

The behavioral effects of psychomotor stimulants such as amphetamine (AMPH) arise from their ability to elicit increases in extracellular dopamine (DA). These AMPH-induced increases are achieved by DA transporter (DAT)-mediated transmitter efflux. Recently, we have shown that AMPH self-administration is reduced in rats that have been depleted of insulin with the diabetogenic agent streptozotocin (STZ). In vitro studies suggest that hypoinsulinemia may regulate the actions of AMPH by inhibiting the insulin downstream effectors phosphotidylinositol 3-kinase (PI3K) and protein kinase B (PKB, or Akt), which we have previously shown are able to fine-tune DAT cell-surface expression. Here, we demonstrate that striatal Akt function, as well as DAT cell-surface expression, are significantly reduced by STZ. In addition, our data show that the release of DA, determined by high-speed chronoamperometry (HSCA) in the striatum, in response to AMPH, is severely impaired in these insulin-deficient rats. Importantly, selective inhibition of PI3K with LY294002 within the striatum results in a profound reduction in the subsequent potential for AMPH to evoke DA efflux. Consistent with our biochemical and in vivo electrochemical data, findings from functional magnetic resonance imaging experiments reveal that the ability of AMPH to elicit positive blood oxygen level–dependent signal changes in the striatum is significantly blunted in STZ-treated rats. Finally, local infusion of insulin into the striatum of STZ-treated animals significantly recovers the ability of AMPH to stimulate DA release as measured by high-speed chronoamperometry. The present studies establish that PI3K signaling regulates the neurochemical actions of AMPH-like psychomotor stimulants. These data suggest that insulin signaling pathways may represent a novel mechanism for regulating DA transmission, one which may be targeted for the treatment of AMPH abuse and potentially other dopaminergic disorders.


Molecular Pharmacology | 2006

Dopamine Transporter Activity Mediates Amphetamine-Induced Inhibition of Akt through a Ca2+/Calmodulin-Dependent Kinase II-Dependent Mechanism

Yuqiang Wei; Jason M. Williams; Concetta Dipace; Uhna Sung; Jonathan A. Javitch; Aurelio Galli; Christine Saunders

The primary mechanism for clearance of extracellular dopamine (DA) is uptake mediated by the dopamine transporter (DAT), which is governed, in part, by the number of functional DATs on the cell surface. Previous studies have shown that amphetamine (AMPH) decreases DAT cell surface expression, whereas insulin reverses this effect through the action of phosphatidylinositol 3-kinase (PI3K). Therefore, it is possible that AMPH causes DAT cell surface redistribution by inhibiting basal insulin signaling. Here, we show in a heterologous expression system and in murine striatal synaptosomes that AMPH causes a time-dependent decrease in the activity of Akt, a protein kinase immediately downstream of PI3K. This effect was blocked by the DAT inhibitor cocaine, suggesting that AMPH must interact with DAT to inhibit Akt. We also showed that AMPH is able to stimulate Ca2+/calmodulin-dependent kinase II (CaMKII) activity, both in the heterologous expression system as well as in murine striatal synaptosomes. The ability of AMPH to decrease Akt activity was blocked by the CaMKII inhibitor 2-[N-(2-hydroxyethyl)]-N-(4-methoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzylamine (KN93), but not by its inactive analog 2-[N-(4-methoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzylamine (KN92). Furthermore, preincubation with KN93 prevented the AMPH-induced decrease in DAT cell surface expression. Thus, AMPH, but not cocaine, decreases Akt activity through a CaMKII-dependent pathway, thereby providing a novel mechanism by which AMPH regulates insulin signaling and DAT trafficking.


NMR in Biomedicine | 2013

Amide proton transfer imaging of the human breast at 7T: Development and reproducibility

Dennis W. J. Klomp; Adrienne N. Dula; Lori R. Arlinghaus; Michel Italiaander; Richard D. Dortch; Zhongliang Zu; Jason M. Williams; Daniel F. Gochberg; Peter R. Luijten; John C. Gore; Thomas E. Yankeelov; Seth A. Smith

Chemical exchange saturation transfer (CEST) can offer information about protons associated with mobile proteins through the amide proton transfer (APT) effect, which has been shown to discriminate tumor from healthy tissue and, more recently, has been suggested as a prognosticator of response to therapy. Despite this promise, APT effects are small (only a few percent of the total signal), and APT imaging is often prone to artifacts resulting from system instability. Here we present a procedure that enables the detection of APT effects in the human breast at 7T while mitigating these issues. Adequate signal‐to‐noise ratio (SNR) was achieved via an optimized quadrature RF breast coil and 3D acquisitions. To reduce the influence of fat, effective fat suppression schemes were developed that did not degrade SNR. To reduce the levels of ghosting artifacts, dummy scans have been integrated into the scanning protocol. Compared with results obtained at 3T, the standard deviation of the measured APT effect was reduced by a factor of four at 7T, allowing for the detection of APT effects with a standard deviation of 1% in the human breast at 7T. Together, these results demonstrate that the APT effect can be reliably detected in the healthy human breast with a high level of precision at 7T. Copyright


The Journal of Neuroscience | 2012

Rescue of Dopamine Transporter Function in Hypoinsulinemic Rats by a D2 Receptor–ERK-Dependent Mechanism

W. Anthony Owens; Jason M. Williams; Christine Saunders; Malcolm J. Avison; Aurelio Galli; Lynette C. Daws

The dopamine (DA) transporter (DAT) is a major target for abused drugs and a key regulator of extracellular DA. A rapidly growing literature implicates insulin as an important regulator of DAT function. We showed previously that amphetamine (AMPH)-evoked DA release is markedly impaired in rats depleted of insulin with the diabetogenic agent streptozotocin (STZ). Similarly, functional magnetic resonance imaging experiments revealed that the blood oxygenation level-dependent signal following acute AMPH administration in STZ-treated rats is reduced. Here, we report that these deficits are restored by repeated, systemic administration of AMPH (1.78 mg/kg, every other day for 8 d). AMPH stimulates DA D2 receptors indirectly by increasing extracellular DA. Supporting a role for D2 receptors in mediating this “rescue,” the effect was completely blocked by pre-treatment of STZ-treated rats with the D2 receptor antagonist raclopride before systemic AMPH. D2 receptors regulate DAT cell surface expression through ERK1/2 signaling. In ex vivo striatal preparations, repeated AMPH injections increased immunoreactivity of phosphorylated ERK1/2 (p-ERK1/2) in STZ-treated but not control rats. These data suggest that repeated exposure to AMPH can rescue, by activating D2 receptors and p-ERK signaling, deficits in DAT function that result from hypoinsulinemia. Our data confirm the idea that disorders influencing insulin levels and/or signaling, such as diabetes and anorexia, can degrade DAT function and that insulin-independent pathways are present that may be exploited as potential therapeutic targets to restore normal DAT function.


Magnetic Resonance Imaging Clinics of North America | 2016

MR Imaging Biomarkers in Oncology Clinical Trials

Richard G. Abramson; Lori R. Arlinghaus; Adrienne N. Dula; C. Chad Quarles; Ashley M. Stokes; Jared A. Weis; Jennifer G. Whisenant; Eduard Y. Chekmenev; Igor Zhukov; Jason M. Williams; Thomas E. Yankeelov

The authors discuss eight areas of quantitative MR imaging that are currently used (RECIST, DCE-MR imaging, DSC-MR imaging, diffusion MR imaging) in clinical trials or emerging (CEST, elastography, hyperpolarized MR imaging, multiparameter MR imaging) as promising techniques in diagnosing cancer and assessing or predicting response of cancer to therapy. Illustrative applications of the techniques in the clinical setting are summarized before describing the current limitations of the methods.


Radiology | 2015

Optimization of 7-T Chemical Exchange Saturation Transfer Parameters for Validation of Glycosaminoglycan and Amide Proton Transfer of Fibroglandular Breast Tissue

Adrienne N. Dula; Blake E. Dewey; Lori R. Arlinghaus; Jason M. Williams; Dennis W. J. Klomp; Thomas E. Yankeelov; Seth A. Smith

PURPOSE To (a) implement simulation-optimized chemical exchange saturation transfer (CEST) measurements sensitive to amide proton transfer (APT) and glycosaminoglycan (GAG) hydroxyl proton transfer effects in the human breast at 7 T and (b) determine the reliability of these techniques for evaluation of fibroglandular tissue in the healthy breast as a benchmark for future studies of pathologic findings. MATERIALS AND METHODS All human studies were institutional review board approved, were HIPAA compliant, and included informed consent. The CEST parameters of saturation duration (25 msec) and amplitude (1 μT) were chosen on the basis of simulation-driven optimization for APT contrast enhancement with the CEST effect quantified by using residuals of a Lorentzian fit. Optimized parameters were implemented at 7 T in 10 healthy women in two separate examinations to evaluate the reliability of CEST magnetic resonance (MR) imaging measurements in the breast. CEST z-spectra were acquired over saturation offset frequencies ranging between ±40 ppm by using a quadrature unilateral breast coil. The imaging-repeat imaging reliability was assessed in terms of the intraclass correlation coefficient, which indicates the ratio of between-subject variation to total variation. RESULTS Simulations were performed of the Bloch equations with chemical exchange-guided selection of optimal values for pulse duration and amplitude, 25 msec and 1 μT, respectively. Reliability was evaluated by using intraclass correlation coefficients (95% confidence intervals), with acceptable results: 0.963 (95% confidence interval: 0.852, 0.991) and 0.903 (95% confidence interval: 0.609, 0.976) for APT and GAG, respectively. CONCLUSION Simulations were used to derive optimal CEST preparation parameters to elicit maximal CEST contrast enhancement in healthy fibroglandular breast tissue due to APT at 7 T. By using these parameters, reproducible values were obtained for both the amide and hydroxyl protons from CEST MR imaging at 7 T and are feasible in the human breast.


Medical Physics | 2014

Longitudinal, intermodality registration of quantitative breast PET and MRI data acquired before and during neoadjuvant chemotherapy: preliminary results.

Nkiruka C. Atuegwu; Xia Li; Lori R. Arlinghaus; Richard G. Abramson; Jason M. Williams; A. Bapsi Chakravarthy; Vandana G. Abramson; Thomas E. Yankeelov

PURPOSE The authors propose a method whereby serially acquired DCE-MRI, DW-MRI, and FDG-PET breast data sets can be spatially and temporally coregistered to enable the comparison of changes in parameter maps at the voxel level. METHODS First, the authors aligned the PET and MR images at each time point rigidly and nonrigidly. To register the MR images longitudinally, the authors extended a nonrigid registration algorithm by including a tumor volume-preserving constraint in the cost function. After the PET images were aligned to the MR images at each time point, the authors then used the transformation obtained from the longitudinal registration of the MRI volumes to register the PET images longitudinally. The authors tested this approach on ten breast cancer patients by calculating a modified Dice similarity of tumor size between the PET and MR images as well as the bending energy and changes in the tumor volume after the application of the registration algorithm. RESULTS The median of the modified Dice in the registered PET and DCE-MRI data was 0.92. For the longitudinal registration, the median tumor volume change was -0.03% for the constrained algorithm, compared to -32.16% for the unconstrained registration algorithms (p = 8 × 10(-6)). The medians of the bending energy were 0.0092 and 0.0001 for the unconstrained and constrained algorithms, respectively (p = 2.84 × 10(-7)). CONCLUSIONS The results indicate that the proposed method can accurately spatially align DCE-MRI, DW-MRI, and FDG-PET breast images acquired at different time points during therapy while preventing the tumor from being substantially distorted or compressed.


Toxicological Sciences | 2010

Chronic Exposure to Manganese Alters Brain Responses to Amphetamine: A Pharmacological Magnetic Resonance Imaging Study

Jason M. Williams; Dejan Milatovic; John C. Gore; Michael Aschner; Malcolm J. Avison

The parkinsonian symptoms and increased Mn accumulation in dopaminergic (DAergic) neurons of the basal ganglia implicate impaired dopamine signaling in the neurotoxic effects of chronic manganese overexposure. Using blood oxygenation level-dependent (BOLD) pharmacological magnetic resonance imaging (phMRI), we mapped brain responses to acute amphetamine (AMPH; 3 mg/kg, ip), which stimulates midbrain DAergic systems, in male Sprague-Dawley rats following 6 weeks of chronic MnCl(2) (5 mg Mn/kg, one per week, iv) or saline treatment. Plasma Mn content, measured immediately following phMRI, was elevated twofold in Mn-treated animals (p < 0.05), but the twofold increase in mean striatal Mn content did not reach significance. In saline-treated animals, AMPH stimulated robust positive BOLD responses throughout the basal ganglia and their reciprocally innervated connections. In contrast, acute AMPH stimulated a negative BOLD response in many of these structures in the Mn-treated group, resulting in significant differences between saline- and Mn-treated AMPH-evoked BOLD responses within caudate putamen, globus pallidus, substantia nigra, mediodorsal thalamic nucleus, and somatosensory cortex. These results demonstrate the utility of AMPH-evoked phMRI as readout of the DAergic signaling in vivo and confirm the vulnerability of DAergic systems to Mn.


PLOS ONE | 2018

Brief exposure to obesogenic diet disrupts brain dopamine networks

Robert L. Barry; Nellie Byun; Jason M. Williams; Michael Siuta; M. N. Tantawy; Nicole K. Speed; Christine Saunders; Aurelio Galli; Kevin D. Niswender; Malcolm J. Avison

Objective We have previously demonstrated that insulin signaling, through the downstream signaling kinase Akt, is a potent modulator of dopamine transporter (DAT) activity, which fine-tunes dopamine (DA) signaling at the synapse. This suggests a mechanism by which impaired neuronal insulin receptor signaling, a hallmark of diet-induced obesity, may contribute to impaired DA transmission. We tested whether a short-term (two-week) obesogenic high-fat (HF) diet could reduce striatal Akt activity, a marker of central insulin, receptor signaling and blunt striatal and dopaminergic network responsiveness to amphetamine (AMPH). Methods We examined the effects of a two-week HF diet on striatal DAT activity in rats, using AMPH as a probe in a functional magnetic resonance imaging (fMRI) assay, and mapped the disruption in AMPH-evoked functional connectivity between key dopaminergic targets and their projection areas using correlation and permutation analyses. We used phosphorylation of the Akt substrate GSK3α in striatal extracts as a measure of insulin receptor signaling. Finally, we confirmed the impact of HF diet on striatal DA D2 receptor (D2R) availability using [18F]fallypride positron emission tomography (PET). Results We found that rats fed a HF diet for only two weeks have reductions in striatal Akt activity, a marker of decreased striatal insulin receptor signaling and blunted striatal responsiveness to AMPH. HF feeding also reduced interactions between elements of the mesolimbic (nucleus accumbens–anterior cingulate) and sensorimotor circuits (caudate/putamen–thalamus–sensorimotor cortex) implicated in hedonic feeding. D2R availability was reduced in HF-fed animals. Conclusion These studies support the hypothesis that central insulin signaling and dopaminergic neurotransmission are already altered after short-term HF feeding. Because AMPH induces DA efflux and brain activation, in large part via DAT, these findings suggest that blunted central nervous system insulin receptor signaling through a HF diet can impair DA homeostasis, thereby disrupting cognitive and reward circuitry involved in the regulation of hedonic feeding.


Academic Radiology | 2015

Prone Versus Supine Breast FDG-PET/CT for Assessing Locoregional Disease Distribution in Locally Advanced Breast Cancer.

Richard G. Abramson; Katrina F. Lambert; Laurie B. Jones-Jackson; Lori R. Arlinghaus; Jason M. Williams; Vandana G. Abramson; A. Bapsi Chakravarthy; Thomas E. Yankeelov

Collaboration


Dive into the Jason M. Williams's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas E. Yankeelov

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xia Li

Vanderbilt University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge