Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason Madore is active.

Publication


Featured researches published by Jason Madore.


The New England Journal of Medicine | 2010

ARID1A Mutations in Endometriosis-Associated Ovarian Carcinomas

Kimberly C. Wiegand; Sohrab P. Shah; Osama M. Al-Agha; Yongjun Zhao; Kane Tse; Thomas Zeng; Janine Senz; Melissa K. McConechy; Michael S. Anglesio; Steve E. Kalloger; Winnie Yang; Alireza Heravi-Moussavi; Ryan Giuliany; Christine Chow; John Fee; Abdalnasser Zayed; Leah M Prentice; Nataliya Melnyk; Gulisa Turashvili; Allen Delaney; Jason Madore; Stephen Yip; Andrew McPherson; Gavin Ha; Lynda Bell; Sian Fereday; Angela Tam; Laura Galletta; Patricia N. Tonin; Diane Provencher

BACKGROUND Ovarian clear-cell and endometrioid carcinomas may arise from endometriosis, but the molecular events involved in this transformation have not been described. METHODS We sequenced the whole transcriptomes of 18 ovarian clear-cell carcinomas and 1 ovarian clear-cell carcinoma cell line and found somatic mutations in ARID1A (the AT-rich interactive domain 1A [SWI-like] gene) in 6 of the samples. ARID1A encodes BAF250a, a key component of the SWI–SNF chromatin remodeling complex. We sequenced ARID1A in an additional 210 ovarian carcinomas and a second ovarian clear-cell carcinoma cell line and measured BAF250a expression by means of immunohistochemical analysis in an additional 455 ovarian carcinomas. RESULTS ARID1A mutations were seen in 55 of 119 ovarian clear-cell carcinomas (46%), 10 of 33 endometrioid carcinomas (30%), and none of the 76 high-grade serous ovarian carcinomas. Seventeen carcinomas had two somatic mutations each. Loss of the BAF250a protein correlated strongly with the ovarian clear-cell carcinoma and endometrioid carcinoma subtypes and the presence of ARID1A mutations. In two patients, ARID1A mutations and loss of BAF250a expression were evident in the tumor and contiguous atypical endometriosis but not in distant endometriotic lesions. CONCLUSIONS These data implicate ARID1A as a tumor-suppressor gene frequently disrupted in ovarian clear-cell and endometrioid carcinomas. Since ARID1A mutation and loss of BAF250a can be seen in the preneoplastic lesions, we speculate that this is an early event in the transformation of endometriosis into cancer. (Funded by the British Columbia Cancer Foundation and the Vancouver General Hospital–University of British Columbia Hospital Foundation.).


The New England Journal of Medicine | 2009

Mutation of FOXL2 in granulosa-cell tumors of the ovary

Sohrab P. Shah; Martin Köbel; Janine Senz; Ryan D. Morin; Blaise Clarke; Kimberly C. Wiegand; Gillian Leung; Abdalnasser Zayed; Erika Mehl; Steve E. Kalloger; Mark Sun; Ryan Giuliany; Erika Yorida; Steven J.M. Jones; Richard Varhol; Kenneth D. Swenerton; Dianne Miller; Philip B. Clement; Colleen Crane; Jason Madore; Diane Provencher; Peter C. K. Leung; Anna deFazio; Jaswinder Khattra; Gulisa Turashvili; Yongjun Zhao; Thomas Zeng; J.N. Mark Glover; Barbara C. Vanderhyden; Chengquan Zhao

BACKGROUND Granulosa-cell tumors (GCTs) are the most common type of malignant ovarian sex cord-stromal tumor (SCST). The pathogenesis of these tumors is unknown. Moreover, their histopathological diagnosis can be challenging, and there is no curative treatment beyond surgery. METHODS We analyzed four adult-type GCTs using whole-transcriptome paired-end RNA sequencing. We identified putative GCT-specific mutations that were present in at least three of these samples but were absent from the transcriptomes of 11 epithelial ovarian tumors, published human genomes, and databases of single-nucleotide polymorphisms. We confirmed these variants by direct sequencing of complementary DNA and genomic DNA. We then analyzed additional tumors and matched normal genomic DNA, using a combination of direct sequencing, analyses of restriction-fragment-length polymorphisms, and TaqMan assays. RESULTS All four index GCTs had a missense point mutation, 402C-->G (C134W), in FOXL2, a gene encoding a transcription factor known to be critical for granulosa-cell development. The FOXL2 mutation was present in 86 of 89 additional adult-type GCTs (97%), in 3 of 14 thecomas (21%), and in 1 of 10 juvenile-type GCTs (10%). The mutation was absent in 49 SCSTs of other types and in 329 unrelated ovarian or breast tumors. CONCLUSIONS Whole-transcriptome sequencing of four GCTs identified a single, recurrent somatic mutation (402C-->G) in FOXL2 that was present in almost all morphologically identified adult-type GCTs. Mutant FOXL2 is a potential driver in the pathogenesis of adult-type GCTs.


Lancet Oncology | 2013

Hormone-receptor expression and ovarian cancer survival: an Ovarian Tumor Tissue Analysis consortium study

Weiva Sieh; Martin Köbel; Teri A. Longacre; David Bowtell; Anna deFazio; Marc T. Goodman; Estrid Høgdall; Suha Deen; Nicolas Wentzensen; Kirsten B. Moysich; James D. Brenton; Blaise Clarke; Usha Menon; C. Blake Gilks; Andre Kim; Jason Madore; Sian Fereday; Joshy George; Laura Galletta; Galina Lurie; Lynne R. Wilkens; Michael E. Carney; Pamela J. Thompson; Rayna K. Matsuno; Susanne K. Kjaer; Allan Jensen; Claus Høgdall; Kimberly R. Kalli; Brooke L. Fridley; Gary L. Keeney

BACKGROUND Few biomarkers of ovarian cancer prognosis have been established, partly because subtype-specific associations might be obscured in studies combining all histopathological subtypes. We examined whether tumour expression of the progesterone receptor (PR) and oestrogen receptor (ER) was associated with subtype-specific survival. METHODS 12 studies participating in the Ovarian Tumor Tissue Analysis consortium contributed tissue microarray sections and clinical data to our study. Participants included in our analysis had been diagnosed with invasive serous, mucinous, endometrioid, or clear-cell carcinomas of the ovary. For a patient to be eligible, tissue microarrays, clinical follow-up data, age at diagnosis, and tumour grade and stage had to be available. Clinical data were obtained from medical records, cancer registries, death certificates, pathology reports, and review of histological slides. PR and ER statuses were assessed by central immunohistochemistry analysis done by masked pathologists. PR and ER staining was defined as negative (<1% tumour cell nuclei), weak (1 to <50%), or strong (≥50%). Associations with disease-specific survival were assessed. FINDINGS 2933 women with invasive epithelial ovarian cancer were included: 1742 with high-grade serous carcinoma, 110 with low-grade serous carcinoma, 207 with mucinous carcinoma, 484 with endometrioid carcinoma, and 390 with clear-cell carcinoma. PR expression was associated with improved disease-specific survival in endometrioid carcinoma (log-rank p<0·0001) and high-grade serous carcinoma (log-rank p=0·0006), and ER expression was associated with improved disease-specific survival in endometrioid carcinoma (log-rank p<0·0001). We recorded no significant associations for mucinous, clear-cell, or low-grade serous carcinoma. Positive hormone-receptor expression (weak or strong staining for PR or ER, or both) was associated with significantly improved disease-specific survival in endometrioid carcinoma compared with negative hormone-receptor expression, independent of study site, age, stage, and grade (hazard ratio 0·33, 95% CI 0·21-0·51; p<0·0001). Strong PR expression was independently associated with improved disease-specific survival in high-grade serous carcinoma (0·71, 0·55-0·91; p=0·0080), but weak PR expression was not (1·02, 0·89-1·18; p=0·74). INTERPRETATION PR and ER are prognostic biomarkers for endometrioid and high-grade serous ovarian cancers. Clinical trials, stratified by subtype and biomarker status, are needed to establish whether hormone-receptor status predicts response to endocrine treatment, and whether it could guide personalised treatment for ovarian cancer. FUNDING Carraresi Foundation and others.


Pigment Cell & Melanoma Research | 2015

PD-L1 expression in melanoma shows marked heterogeneity within and between patients: implications for anti-PD-1/PD-L1 clinical trials

Jason Madore; Ricardo E. Vilain; Alexander M. Menzies; Hojabr Kakavand; James S. Wilmott; Jessica Hyman; Jennifer H. Yearley; Richard F. Kefford; John F. Thompson; Peter Hersey; Richard A. Scolyer

This study evaluated the expression of PD‐L1 in immunotherapy‐naïve metastatic melanoma patients to determine longitudinal intrapatient concordance and correlate PD‐L1 status with clinicopathologic characteristics and outcome. PD‐L1 expression was assessed by immunohistochemistry in 58 patients (43 primary tumors, 96 metastases). Seventy‐two percent of patients had at least one specimen expressing PD‐L1 in ≥1% of tumor cells. Median positive tumor cell count overall was low (8% in nonzero specimens). PD‐L1 expression was frequently discordant between primary tumors and metastases and between intrapatient metastases, such that 23/46 longitudinal patient specimens were discordant. PD‐L1 was associated with higher TIL grade but not with other known prognostic features. There was a positive univariate association between PD‐L1 expression in locoregional metastases and melanoma‐specific survival, but the effect was not observed for primary melanoma. In locoregional lymph node metastasis, PD‐L1+/TIL+ patients had the best outcome, and PD‐L1+/TIL− patients had poor outcome.


Lung Cancer | 2015

PD-L1 expression is a favorable prognostic factor in early stage non-small cell carcinoma

Wendy A. Cooper; Thang Tran; Ricardo E. Vilain; Jason Madore; Christina I. Selinger; Maija Kohonen-Corish; PoYee Yip; Bing Yu; Sandra A. O’Toole; Brian C. McCaughan; Jennifer H. Yearley; Lisa G. Horvath; Steven Kao; Michael Boyer; Richard A. Scolyer

OBJECTIVES Immune checkpoint blockade using inhibitors of programmed death-1 have shown promise in early phase clinical trials in NSCLC and programmed death-ligand 1 (PD-L1) tumoral expression could potentially be a useful predictive marker. Data reporting the prevalence of PD-L1 expression in NSCLC and clinicopathologic associations is very limited. We sought to determine the frequency of PD-L1 expression in NSCLC and investigate associations with clinicopathologic features and patient outcome. MATERIALS AND METHODS PD-L1 expression was analyzed using immunohistochemistry (Merck; clone 22C3) in 678 stages I-III NSCLC and 52 paired nodal metastases using tissue microarrays. Tumors with ≥50% cells showing positive membrane staining were considered to have high expression of PD-L1. RESULTS PD-L1 expression of any intensity was identified in 32.8% of cases. High PD-L1 expression was found in 7.4% of NSCLC. Squamous cell carcinomas (8.1%) and large cell carcinomas (12.1%) showed high PD-L1 expression more commonly than adenocarcinomas (5.1%) but this was not statistically significant (p=0.072). High PD-L1 expression was associated with younger patient age and high tumor grade (p<0.05). There was no association with gender, tumor size, stage, nodal status, EGFR or KRAS mutation status. In multivariate analysis, patients with high PD-L1 expression had significantly longer overall survival (p<0.05). CONCLUSIONS PD-L1 is expressed at high levels in a significant proportion of NSCLC and appears to be a favorable prognostic factor in early stage disease. As there are potential sampling limitations using tissue microarrays to assess heterogeneously expressed biomarkers, and as the results may differ in advanced stage disease, further studies are recommended.


Cancer Research | 2015

UV-Associated Mutations Underlie the Etiology of MCV-Negative Merkel Cell Carcinomas

Stephen Q. Wong; Kelly Waldeck; Ismael A. Vergara; Jan Schröder; Jason Madore; James S. Wilmott; Andrew J. Colebatch; De Paoli-Iseppi R; Jason Li; Richard Lupat; Timothy Semple; Gisela Mir Arnau; Andrew Fellowes; Leonard Jh; George Hruby; Graham J. Mann; John F. Thompson; Carleen Cullinane; Meredith L. Johnston; Mark Shackleton; Shahneen Sandhu; David Bowtell; Ricky W. Johnstone; Stephen B. Fox; Grant A. McArthur; Anthony T. Papenfuss; Richard A. Scolyer; Anthony J. Gill; Rodney J. Hicks; Richard W. Tothill

Merkel cell carcinoma (MCC) is an uncommon, but highly malignant, cutaneous tumor. Merkel cell polyoma virus (MCV) has been implicated in a majority of MCC tumors; however, viral-negative tumors have been reported to be more prevalent in some geographic regions subject to high sun exposure. While the impact of MCV and viral T-antigens on MCC development has been extensively investigated, little is known about the etiology of viral-negative tumors. We performed targeted capture and massively parallel DNA sequencing of 619 cancer genes to compare the gene mutations and copy number alterations in MCV-positive (n = 13) and -negative (n = 21) MCC tumors and cell lines. We found that MCV-positive tumors displayed very low mutation rates, but MCV-negative tumors exhibited a high mutation burden associated with a UV-induced DNA damage signature. All viral-negative tumors harbored mutations in RB1, TP53, and a high frequency of mutations in NOTCH1 and FAT1. Additional mutated or amplified cancer genes of potential clinical importance included PI3K (PIK3CA, AKT1, PIK3CG) and MAPK (HRAS, NF1) pathway members and the receptor tyrosine kinase FGFR2. Furthermore, looking ahead to potential therapeutic strategies encompassing immune checkpoint inhibitors such as anti-PD-L1, we also assessed the status of T-cell-infiltrating lymphocytes (TIL) and PD-L1 in MCC tumors. A subset of viral-negative tumors exhibited high TILs and PD-L1 expression, corresponding with the higher mutation load within these cancers. Taken together, this study provides new insights into the underlying biology of viral-negative MCC and paves the road for further investigation into new treatment opportunities.


The EMBO Journal | 2011

H3K27 demethylation by JMJD3 at a poised enhancer of anti-apoptotic gene BCL2 determines ERα ligand dependency

Amy Svotelis; Stéphanie Bianco; Jason Madore; Gabrielle Huppé; Alexei Nordell-Markovits; Anne-Marie Mes-Masson; Nicolas Gévry

Chromatin represents a repressive barrier to the process of ligand‐dependent transcriptional activity of nuclear receptors. Here, we show that H3K27 methylation imposes ligand‐dependent regulation of the oestrogen receptor α (ERα)‐dependent apoptotic response via Bcl‐2 in breast cancer cells. The activation of BCL2 transcription is dependent on the simultaneous inactivation of the H3K27 methyltransferase, EZH2, and the demethylation of H3K27 at a poised enhancer by the ERα‐dependent recruitment of JMJD3 in hormone‐dependent breast cancer cells. We also provide evidence that this pathway is modified in cells resistant to anti‐oestrogen (AE), which constitutively express BCL2. We show that the lack of H3K27 methylation at BCL2 regulatory elements due to the inactivation of EZH2 by the HER2 pathway leads to this constitutive activation of BCL2 in these AE‐resistant cells. Our results describe a mechanism in which the epigenetic state of chromatin affects ligand dependency during ERα‐regulated gene expression.


International Journal of Cancer | 2006

From gene profiling to diagnostic markers: IL-18 and FGF-2 complement CA125 as serum-based markers in epithelial ovarian cancer.

Cécile Le Page; Véronique Ouellet; Jason Madore; Thomas J. Hudson; Patricia N. Tonin; Diane Provencher; Anne-Marie Mes-Masson

We used an oligonucleotide‐based DNA microarray to identify potential markers in 39 primary cultures of ovarian cancer specimens compared with 11 primary cultures of normal ovarian epithelia. Differential gene expression of IL‐18 and FGF‐2 was validated on a subset of samples by quantitative PCR and by IHC, using an independent tissue array of 90 cores of 20 normal ovarian surface epithelia and 70 EOCs representing different grades and pathologies of ovarian disease. We further compared, by ELISA, these two markers with CA125 in sera from 25 cancer‐free and 47 ovarian cancer patients. IL‐18 and FGF‐2 proteins were significantly elevated in tumor tissues (p<0.04) and sera (p<0.05) from patients with ovarian cancer. In combination, the three markers (IL‐18, FGF‐2, and CA125) showed similar sensitivity in scoring for ovarian cancer (35/45 patients) compared to that of CA125 alone (37/45) and significantly improved the specificity of detection (20/25 patients) compared to each marker individually (15/25 for CA125; 18/25 FGF‐2; 16/25 for IL‐18). In conclusion we show that a combination of the three serum markers (IL‐18, FGF‐2 and CA125) is associated with EOC, with higher specificity than CA125 alone. Prospective studies with a large cohort of susceptible ovarian cancer patients will be required to expand these findings.


Clinical Genetics | 2015

A recurrent germline BAP1 mutation and extension of the BAP1 tumor predisposition spectrum to include basal cell carcinoma

Karin Wadt; Lauren G. Aoude; Peter A. Johansson; Annalisa Solinas; Antonia L. Pritchard; Oana Crainic; M. T. Andersen; Jens Folke Kiilgaard; Steffen Heegaard; Lone Sunde; B. Federspiel; Jason Madore; John F. Thompson; Stanley W. McCarthy; A. Goodwin; Hensin Tsao; Göran Jönsson; Ruta Gupta; Jeffrey M. Trent; Anne-Marie Gerdes; Kevin M. Brown; Richard A. Scolyer; Nicholas K. Hayward

We report four previously undescribed families with germline BRCA1‐associated protein‐1 gene (BAP1) mutations and expand the clinical phenotype of this tumor syndrome. The tumor spectrum in these families is predominantly uveal malignant melanoma (UMM), cutaneous malignant melanoma (CMM) and mesothelioma, as previously reported for germline BAP1 mutations. However, mutation carriers from three new families, and one previously reported family, developed basal cell carcinoma (BCC), thus suggesting inclusion of BCC in the phenotypic spectrum of the BAP1 tumor syndrome. This notion is supported by the finding of loss of BAP1 protein expression by immunochemistry in two BCCs from individuals with germline BAP1 mutations and no loss of BAP1 staining in 53 of sporadic BCCs consistent with somatic mutations and loss of heterozygosity of the gene in the BCCs occurring in mutation carriers. Lastly, we identify the first reported recurrent mutation in BAP1 (p.R60X), which occurred in three families from two different continents. In two of the families, the mutation was inherited from a common founder but it arose independently in the third family.


Oncogenesis | 2014

Meta-analysis of the global gene expression profile of triple-negative breast cancer identifies genes for the prognostication and treatment of aggressive breast cancer.

Fares Al-Ejeh; Peter T. Simpson; J M Sanus; K Klein; Murugan Kalimutho; Wei Shi; Mariska Miranda; Jamie R. Kutasovic; Ashwini Raghavendra; Jason Madore; Lynne Reid; Lutz Krause; Georgia Chenevix-Trench; Sunil R. Lakhani; Kum Kum Khanna

Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype lacking expression of estrogen and progesterone receptors (ER/PR) and HER2, thus limiting therapy options. We hypothesized that meta-analysis of TNBC gene expression profiles would illuminate mechanisms underlying the aggressive nature of this disease and identify therapeutic targets. Meta-analysis in the Oncomine database identified 206 genes that were recurrently deregulated in TNBC compared with non-TNBC and in tumors that metastasized or led to death within 5 years. This ‘aggressiveness gene list’ was enriched for two core functions/metagenes: chromosomal instability (CIN) and ER signaling metagenes. We calculated an ‘aggressiveness score’ as the ratio of the CIN metagene to the ER metagene, which identified aggressive tumors in breast cancer data sets regardless of subtype or other clinico-pathological indicators. A score calculated from six genes from the CIN metagene and two genes from the ER metagene recapitulated the aggressiveness score. By multivariate survival analysis, we show that our aggressiveness scores (from 206 genes or the 8 representative genes) outperformed several published prognostic signatures. Small interfering RNA screen revealed that the CIN metagene holds therapeutic targets against TNBC. Particularly, the inhibition of TTK significantly reduced the survival of TNBC cells and synergized with docetaxel in vitro. Importantly, mitosis-independent expression of TTK protein was associated with aggressive subgroups, poor survival and further stratified outcome within grade 3, lymph node-positive, HER2-positive and TNBC patients. In conclusion, we identified the core components of CIN and ER metagenes that identify aggressive breast tumors and have therapeutic potential in TNBC and aggressive breast tumors. Prognostication from these metagenes at the mRNA level was limited to ER-positive tumors. However, we provide evidence that mitosis-independent expression of TTK protein was prognostic in TNBC and other aggressive breast cancer subgroups, suggesting that protection of CIN/aneuploidy drives aggressiveness and treatment resistance.

Collaboration


Dive into the Jason Madore's collaboration.

Top Co-Authors

Avatar

Richard A. Scolyer

Royal Prince Alfred Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robyn P. M. Saw

Royal Prince Alfred Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge