Jason P. Mansell
University of Bristol
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jason P. Mansell.
Journal of Clinical Investigation | 1998
Jason P. Mansell; Allen J. Bailey
Biochemical investigations into the pathogenesis of osteoarthritis have, for the last two decades, concentrated on the mechanisms involved in the destruction of the articular cartilage. Although bone changes are known to occur, the biochemistry of the collagenous matrix within osteoarthritic bone has received scant attention. We report that bone collagen metabolism is increased within osteoarthritic femoral heads, with the greatest changes occurring within the subchondral zone. Collagen synthesis and its potential to mineralize were determined by the carboxy-terminal propeptide content and alkaline phosphatase activity, respectively. These data supported elevated new matrix formation. Our finding of a three- to fourfold increase in TGF-beta in osteoarthritic bone indicates that this might represent a stimulus for the increased collagen synthesis observed. Of additional significance is the hypomineralization of deposited collagen in the subchondral zone of osteoarthritic femoral heads, supporting a greater proportion of osteoid in the diseased tissue. The cross-linking of collagen was similar to that observed for controls. In addition, the degradative potential of osteoarthritic bone was considerably higher as demonstrated by increased matrix metalloproteinase 2 activity, and again the greater activity was associated with the subchondral bone tissue. The polarization exhibited in the metabolism of bone collagen from osteoarthritic hips might exacerbate the processes involved in joint deterioration by altering joint morphology. This in turn may alter the distribution of mechanical forces to the various tissues, to which bone is a sensitive responder. Bone collagen metabolism is clearly an important factor in the pathogenesis of osteoarthritis and certainly warrants further biochemical study.
Gerontology | 1997
Allen J. Bailey; Jason P. Mansell
Research into the aetiology of osteoarthritis has for several decades been concentrated on the destruction of the articular cartilage, the initiating events being believed to be changes in the proteoglycans and subsequently in the supporting collagenous framework, whereafter the disease is irreversible. Recent evidence has supported an old contention that the underlying bone may be involved, namely, increased technetium scintigraphy correlated with increased severity of the osteoarthritis as demonstrated by joint narrowing, and a demonstration of increased metabolism of cancellous bone collagen compared to age-matched controls. These studies have not been able to answer the question of the primary initiating event: does increased bone metabolism initiate cartilage destruction or vice versa? However, recent detailed studies on animal models, particularly the macaque, have demonstrated that in this case thickening of the subchondral bone precedes fibrillation of the cartilage, which is possibly due to increased resistance of the bone to compression. Further, MRI studies on the guinea pig suggest that the initial site of activity is at the ligament bone insertion site, prior to endochondral bone sclerosis. We propose that the biomechanics of the joint are perturbed by the loss of tension from the ligament following trauma, leading to remodelling of the subchondral bone. Certainly in humans damage to the cruciate ligament often results in osteoarthritis. It may be that subclinical damage also ultimately results in osteoarthritis. Although the results from animal models will need to be treated with caution, the concept that bone ligament changes precede articular cartilage destruction should lead to a redirection of research, and perhaps therapy, for this important and cruelly disabling disease.
Nature Reviews Rheumatology | 2007
Jason P. Mansell; Chris Collins; Allen J. Bailey
The main emphasis of research in osteoarthritis has been the delineation of the mechanism of articular cartilage degradation. In this Viewpoint, Dr Bailey and colleagues discuss the importance of bone in osteoarthritis, the focus of which has been neglected to date.
Journal of Dental Research | 2002
Nathan L. Brown; Sj Yarram; Jason P. Mansell; Jonathon R. Sandy
Mammalian palatogenesis depends on palatal shelf elevation, medial edge epithelium (MEE) breakdown, and mesenchyme flow. These all require matrix remodeling, which is controlled in part by the family of matrix metalloproteinases (MMPs). We used an organ culture system to examine the effect of a general MMP inhibitor (BB3103) on mouse palatogenesis. Palates cultured in 20 μM BB3103 contained no active MMP-2, and only one palate fused from a sample size of 15. In this single palate, MMP-3 was present at higher levels than in palates that failed to fuse. MMP-3 is known to be involved in epithelial mesenchymal transformation (EMT), and its persistence may explain why this palate fused. This implies a role for MMPs in normal palatogenesis, and disruption of their activity may result in cleft palate.
Development Growth & Differentiation | 2003
Nathan L. Brown; Lynda Knott; Eugene Halligan; Sj Yarram; Jason P. Mansell; Jonathan R Sandy
The mammalian face is assembled in utero in a series of complex and interdependent molecular, cell and tissue processes. The orofacial complex appears to be exquisitely sensitive to genetic and environmental influence and this explains why clefts of the lip and palate are the most common congenital anomaly in humans (one in 700 live births). In this study, microarray technology was used to identify genes that may play pivotal roles in normal murine palatogenesis. mRNA was isolated from murine embryonic palatal shelves oriented vertically (before elevation), horizontally (following elevation, before contact), and following fusion. Changes in gene expression between the three different stages were analyzed with GeneChip® microarrays. A number of genes were upregulated or downregulated, and large changes were seen in the expression of loricrin, glutamate decarboxylase, gamma‐amino butyric acid type A receptor beta3 subunit, frizzled, Wnt‐5a, metallothionein, annexin VIII, LIM proteins, Sox1, plakophilin1, cathepsin K and creatine kinase. In this paper, the changes in genetic profile of the developing murine palate are presented, and the possible role individual genes/proteins may play during normal palate development are discussed. Candidate genes with a putative role in cleft palate are also highlighted.
Molecular Microbiology | 2003
Catherine Heddle; Angela H. Nobbs; Nicholas S. Jakubovics; Micaela Gal; Jason P. Mansell; David Dymock; Howard F. Jenkinson
Microbial interactions with host molecules, and programmed responses to host environmental stimuli, are critical for colonization and initiation of pathogenesis. Bacteria of the genus Streptococcus are primary colonizers of the human mouth. They express multiple cell‐surface adhesins that bind salivary components and other oral bacteria and enable the development of polymicrobial biofilms associated with tooth decay and periodontal disease. However, the mechanisms by which streptococci invade dentine to infect the tooth pulp and periapical tissues are poorly understood. Here we show that production of the antigen I/II (AgI/II) family polypeptide adhesin and invasin SspA in Streptococcus gordonii is specifically upregulated in response to a collagen type I signal, minimally the tri‐peptide Gly‐Pro‐Xaa (where Xaa is hydroxyproline or alanine). Increased AgI/II polypeptide expression promotes bacterial adhesion and extended growth of streptococcal cell chains along collagen type I fibrils that are characteristically found within dentinal tubules. These observations define a new model of host matrix signal‐induced tissue penetration by bacteria and open the way for novel therapy opportunities for oral invasive diseases.
Molecular and Cellular Endocrinology | 2004
Sj Yarram; Ch Tasman; J Gidley; M Clare; Jonathan R Sandy; Jason P. Mansell
Calcitriol (1alpha,25(OH)(2)D(3)) plays a key role in the differentiation of osteoblasts, the cells responsible for the formation and maintenance of healthy bone matrix. Recently it has emerged that calcitriol influences the trafficking or stability of epidermal growth factor (EGF) receptors. However, how these agents might work together in regulating growth and differentiation has not been examined. Using the human osteoblast cell line, MG63, we were able to induce a profound differentiation response by treating these cells with a combination of calcitriol (100 nM) and EGF (10 ng/ml). Co-stimulation of MG63 osteoblasts with calcitriol and EGF led to synergistic increases in osteocalcin and alkaline phosphatase (ALP), proteins expressed by differentiating cells. Inhibition of differentiation was accomplished by MEK and protein kinase C (PKC) inhibitors. Other ligands known to signal via receptor tyrosine kinases could not substitute for EGF in the maturation response. These novel findings may help identify new processes that drive osteoblast differentiation.
In Vitro Cellular & Developmental Biology – Animal | 2003
Lynda Knott; Tom Hartridge; Nathan L. Brown; Jason P. Mansell; Jonathon R. Sandy
SummaryCleft palate is the most common craniofacial anomaly. Affected individuals require extensive medical and psychosocial support. Although cleft plate has a complex and poorly understood etiology, low maternal folate is known to be a risk factor for craniofacial anomalies. Folate deficiency results in elevated homocysteine levels, which may disturb palatogenesis by several mechanism, including oxidative stress and perturbation of matrix metabolism. We examined the effect of homocysteine-induced oxidative stress on human embryonic palatal mesenchyme (HEPM) cells and demonstrated that biologically relevant levels of homocysteine (20–100 μM) with copper (10 μM) resulted in dose-dependant apoptosis, which was prevented by addition of catalase but not superoxide dismutase. Incubation of murine palates in organ culture with homocysteine (100 μM) and CuSO4 (10 μM) resulted in a decrease in palate fusion, which was not significant. Gelatin gel zymograms of HEPM cell-conditioned media and extracts of cultured murine palates, however, showed no change in the expression or activation of pro-matrix metalloproteinase-2 with homocysteine (20 μM-1 mM) with or without CuSO4 (10 μM). We have demonstrated that biologically relevant levels of homocysteine in combination with copper can results in apoptosis as a result of oxidative stress; therefore, homocysteine has the potential to disrupt normal palate development.
Biomaterials | 2010
Jason P. Mansell; Michele E. Barbour; Christopher Moore; Maryam Nowghani; Moreica B. Pabbruwe; Terje Sjöström; Ashley W Blom
Successful osseointegration stems from the provision of a mechanically competent mineralised matrix at the implant site. Mature osteoblasts are the cells responsible for achieving this and a key factor for ensuring healthy bone tissue is associated with prosthetic materials will be 1 alpha,25 dihydroxy vitamin D3 (calcitriol). However it is known that calcitriol per se does not promote osteoblast maturation, rather the osteoblasts need to be in receipt of calcitriol in combination with selected growth factors in order to undergo a robust maturation response. Herein we report how agonists of the lysophosphatidic acid (LPA) receptor, LPA and (2S)-OMPT, synergistically co-operate with calcitriol to secure osteoblast maturation for cells grown upon two widely used bone biomaterials, titanium and hydroxyapatite. Efforts could now be focussed on functionalizing these materials with LPA receptor agonists to support in vivo calcitriol-induced osseointegration via heightened osteoblast maturation responses.
Molecular and Cellular Endocrinology | 2009
Jason P. Mansell; David Farrar; Scott Jones; Maryam Nowghani
Bone tissue is especially receptive to physical stimulation and agents with the capacity to mimic the signalling incurred via mechanical loading on osteoblasts may find an application in a bone regenerative setting. Recently this laboratory revealed that the major serum lipid, lysophosphatidic acid (LPA), co-operated with 1alpha,25-dihydroxy vitamin D3 (D3) in stimulating human osteoblast maturation. Actin stress fiber accrual in LPA treated osteoblasts would have generated peripheral tension which in turn may have heightened the maturation response of these cells to D3. To test this hypothesis we examined if other agents known to trigger stress fiber accumulation co-operated with D3 in stimulating human osteoblast maturation. Colchicine, nocodazole and LPA all co-operated with D3 to promote MG63 maturation in a MEK dependent manner. In contrast, calpeptin, a direct activator of Rho kinase and stress fiber accumulation did not act with D3 to secure MG63 differentiation. Herein we describe how the signalling elicited via microtubule disruption cooperates with D3 in the development of mature osteoblasts.