Jason R. Barash
California Department of Public Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jason R. Barash.
PLOS ONE | 2008
Karine Bagramyan; Jason R. Barash; Stephen S. Arnon; Markus Kalkum
Background A highly sensitive, rapid and cost efficient method that can detect active botulinum neurotoxin (BoNT) in complex biological samples such as foods or serum is desired in order to 1) counter the potential bioterrorist threat 2) enhance food safety 3) enable future pharmacokinetic studies in medical applications that utilize BoNTs. Methodology/Principal Findings Here we describe a botulinum neurotoxin serotype A assay with a large immuno-sorbent surface area (BoNT/A ALISSA) that captures a low number of toxin molecules and measures their intrinsic metalloprotease activity with a fluorogenic substrate. In direct comparison with the “gold standard” mouse bioassay, the ALISSA is four to five orders of magnitudes more sensitive and considerably faster. Our method reaches attomolar sensitivities in serum, milk, carrot juice, and in the diluent fluid used in the mouse assay. ALISSA has high specificity for the targeted type A toxin when tested against alternative proteases including other BoNT serotypes and trypsin, and it detects the holotoxin as well as the multi-protein complex form of BoNT/A. The assay was optimized for temperature, substrate concentration, size and volume proportions of the immuno-sorbent matrix, enrichment and reaction times. Finally, a kinetic model is presented that is consistent with the observed improvement in sensitivity. Conclusions/Significance The sensitivity, specificity, speed and simplicity of the BoNT ALISSA should make this method attractive for diagnostic, biodefense and pharmacological applications.
Journal of Clinical Microbiology | 2009
Nir Dover; Jason R. Barash; Stephen S. Arnon
Botulinum neurotoxin, the most poisonous substance known and a potential biothreat agent ([1][1]), causes human and animal botulism worldwide ([4][2], [9][3]). This toxin is encoded by the bont gene as part of a cluster that includes nontoxic accessory genes ([10][4]). Two main gene clusters are
Journal of Clinical Microbiology | 2005
Jason R. Barash; Tania W. H. Tang; Stephen S. Arnon
ABSTRACT In late 2003 a severely hypotonic neonate, just 38 h old at onset of illness, was found to have infant botulism caused by neurotoxigenic Clostridium baratii type F. Environmental investigations failed to identify a source of this strain. This is the youngest patient reported to have infant botulism and the fifth instance of infant botulism caused by C. baratii type F.
Applied and Environmental Microbiology | 2011
Thomas E. Macdonald; Charles H. Helma; Yulin Shou; Yolanda E. Valdez; Lawrence O. Ticknor; Brian T. Foley; Stephen W. Davis; George E. Hannett; Cassandra Kelly-Cirino; Jason R. Barash; Stephen S. Arnon; Miia Lindström; Hannu Korkeala; Leonard A. Smith; Theresa J. Smith; Karen K. Hill
ABSTRACT A total of 41 Clostridium botulinum serotype E strains from different geographic regions, including Canada, Denmark, Finland, France, Greenland, Japan, and the United States, were compared by multilocus sequence typing (MLST), amplified fragment length polymorphism (AFLP) analysis, variable-number tandem-repeat (VNTR) analysis, and botulinum neurotoxin (bont) E gene sequencing. The strains, representing environmental, food-borne, and infant botulism samples collected from 1932 to 2007, were analyzed to compare serotype E strains from different geographic regions and types of botulism and to determine whether each of the strains contained the transposon-associated recombinase rarA, involved with bont/E insertion. MLST examination using 15 genes clustered the strains into several clades, with most members within a cluster sharing the same BoNT/E subtype (BoNT/E1, E2, E3, or E6). Sequencing of the bont/E gene identified two new variants (E7, E8) that showed regions of recombination with other E subtypes. The AFLP dendrogram clustered the 41 strains similarly to the MLST dendrogram. Strains that could not be differentiated by AFLP, MLST, or bont gene sequencing were further examined using three VNTR regions. Both intact and split rarA genes were amplified by PCR in each of the strains, and their identities were confirmed in 11 strains by amplicon sequencing. The findings suggest that (i) the C. botulinum serotype E strains result from the targeted insertion of the bont/E gene into genetically conserved bacteria and (ii) recombination events (not random mutations) within bont/E result in toxin variants or subtypes within strains.
Journal of Clinical Microbiology | 2004
Jason R. Barash; Stephen S. Arnon
ABSTRACT A retrospective study of Clostridium botulinum strains isolated from patients from California with infant botulism identified the fourth known C. botulinum strain that produces both type B and type F botulinum toxins. This unique strain represented 0.12% of the California infant botulism case isolates from 1976 to 2003. The relative concentrations of type B and F toxins produced were temperature dependent.
PLOS ONE | 2013
Nir Dover; Jason R. Barash; Karen K. Hill; Karen W. Davenport; Hazuki Teshima; Gary Xie; Stephen S. Arnon
Sanger and shotgun sequencing of Clostridium botulinum strain Af84 type Af and its botulinum neurotoxin gene (bont) clusters identified the presence of three bont gene clusters rather than the expected two. The three toxin gene clusters consisted of bont subtypes A2, F4 and F5. The bont/A2 and bont/F4 gene clusters were located within the chromosome (the latter in a novel location), while the bont/F5 toxin gene cluster was located within a large 246 kb plasmid. These findings are the first identification of a C. botulinum strain that contains three botulinum neurotoxin gene clusters.
The Journal of Pediatrics | 2010
Jason R. Barash; Jennifer K. Hsia; Stephen S. Arnon
OBJECTIVE Because Clostridium botulinum was isolated from powdered infant formula (PIF) fed to an infant in the United Kingdom who subsequently developed infant botulism and from unopened PIF from the same manufacturer, we tested PIF manufactured in the United States for the presence of clostridial spores. STUDY DESIGN Thirty PIF ingested by 19 California infants with botulism within 4 weeks of onset of illness (48% of all patients fed PIF during study) in 2006-2007 were cultured anaerobically to isolate clostridia. All isolated clostridia were identified to the species level and enumerated with standard microbiologic and molecular methods. RESULTS Five of 30 (17%) PIF samples ingested by patients contained clostridial spores. Spores were also found in 7 of 9 (78%) market-purchased PIF samples. Clostridium sporogenes was isolated most frequently, followed by Clostridium butyricum and at least 10 other soil-dwelling clostridial species. No neurotoxigenic clostridia were isolated. The most probable number of clostridial spores in PIF ranged between 1.1 to >23 per 100 g. CONCLUSIONS With the notable exception of production of botulinum neurotoxin, C sporogenes is physiologically comparable with proteolytic strains of C botulinum, and both share the same natural reservoir (soils and dust worldwide). The isolation of C sporogenes and potentially pathogenic clostridia from U.S.-manufactured PIF suggests that neurotoxigenic clostridial spores have the potential to be present in these products.
The Journal of Infectious Diseases | 2014
Haydee A. Dabritz; Karen K. Hill; Jason R. Barash; Lawrence O. Ticknor; Charles H. Helma; Nir Dover; Jessica R. Payne; Stephen S. Arnon
BACKGROUND Infant botulism (IB), first identified in California in 1976, results from Clostridium botulinum spores that germinate, multiply, and produce botulinum neurotoxin (BoNT) in the immature intestine. From 1976 to 2010 we created an archive of 1090 BoNT-producing isolates consisting of 1012 IB patient (10 outpatient, 985 hospitalized, 17 sudden death), 25 food, 18 dust/soils, and 35 other strains. METHODS The mouse neutralization assay determined isolate toxin type (56% BoNT/A, 32% BoNT/B). Amplified fragment-length polymorphism (AFLP) analysis of the isolates was combined with epidemiologic information. RESULTS The AFLP dendrogram, the largest to date, contained 154 clades; 52% of isolates clustered in just 2 clades, 1 BoNT/A (n=418) and 1 BoNT/B (n=145). These clades constituted an endemic C. botulinum population that produced the entire clinical spectrum of IB. Isolates from the patients home environment (dust/soil, honey) usually located to the same AFLP clade as the patients isolate, thereby identifying the likely source of infective spores. C. botulinum A(B) strains were identified in California for the first time. CONCLUSIONS Combining molecular methods and epidemiological data created an effective tool that yielded novel insights into the genetic diversity of C. botulinum and the clinical spectrum, occurrence, and distribution of IB in California.
Applied and Environmental Microbiology | 2011
Nir Dover; Jason R. Barash; Karen K. Hill; John C. Detter; Stephen S. Arnon
ABSTRACT We sequenced for the first time the complete neurotoxin gene cluster of a nonproteolytic Clostridium botulinum type F. The neurotoxin gene cluster contained a novel gene arrangement that, compared to other C. botulinum neurotoxin gene clusters, lacked the regulatory botR gene and contained an intergenic is element between its orfX2 and orfX3 genes.
PLOS ONE | 2014
Nir Dover; Jason R. Barash; Julianne N. Burke; Karen K. Hill; John C. Detter; Stephen S. Arnon
Botulinum neurotoxin (BoNT) is the most poisonous substances known and its eight toxin types (A to H) are distinguished by the inability of polyclonal antibodies that neutralize one toxin type to neutralize any of the other seven toxin types. Infant botulism, an intestinal toxemia orphan disease, is the most common form of human botulism in the United States. It results from swallowed spores of Clostridium botulinum (or rarely, neurotoxigenic Clostridium butyricum or Clostridium baratii) that germinate and temporarily colonize the lumen of the large intestine, where, as vegetative cells, they produce botulinum toxin. Botulinum neurotoxin is encoded by the bont gene that is part of a toxin gene cluster that includes several accessory genes. We sequenced for the first time the complete botulinum neurotoxin gene cluster of nonproteolytic C. baratii type F7. Like the type E and the nonproteolytic type F6 botulinum toxin gene clusters, the C. baratii type F7 had an orfX toxin gene cluster that lacked the regulatory botR gene which is found in proteolytic C. botulinum strains and codes for an alternative σ factor. In the absence of botR, we identified a putative alternative regulatory gene located upstream of the C. baratii type F7 toxin gene cluster. This putative regulatory gene codes for a predicted σ factor that contains DNA-binding-domain homologues to the DNA-binding domains both of BotR and of other members of the TcdR-related group 5 of the σ70 family that are involved in the regulation of toxin gene expression in clostridia. We showed that this TcdR-related protein in association with RNA polymerase core enzyme specifically binds to the C. baratii type F7 botulinum toxin gene cluster promoters. This TcdR-related protein may therefore be involved in regulating the expression of the genes of the botulinum toxin gene cluster in neurotoxigenic C. baratii.